
对于数据的统计分析来说,有很多人觉得做出p值那一步比较高深。其实不然,数据整理和数据清洗才是吃力不讨好的事情,也能体现出数据处理人员的能力。数据整理与清洗既花费时间,又不出成果,因为大家往往觉得“差异是否有统计学意义”才是统计的成果。
对于任何一个统计软件来说,将数据整理成可供分析的格式,往往都是比较花费功夫的事情。准确且高效地进行数据整理,是良好的统计分析的前提,也要求整理人员有着很强的软件操作功底。本文就向大家介绍一个数据整理的小技巧,帮助大家快速地进行数据整理,使用SPSS的计数功能。
假设现在面临这样一种情况,有180名研究对象分别对a1-a10题进行了作答,每1题有5个选项,分别是:非常满意(1)、满意(2)、一般(3)、不满意(4)和非常不满意(5)。研究者想知道不同性别的研究对象在a1-a10共计10个项目上,满意的出现次数是否相同?这是一个简单的两组间计量资料比较的例子,很容易想到用t检验或者非参数检验。
但是首先需要计算的是每个研究对象10道题目中选择“满意”的题目有几题?这时候推荐使用SPSS转换功能下的计数功能,如下图:
然后点击OK,就会出现下图的结果,软件自动生存了count列,并在该列中展示了每个人选择“满意”的次数。
这样的计算是不是比以前写程序来计算方便多了。另外这个计数功能还可以用在多个选项的计数上,比如求出每个研究对象“选择满意和非常满意”的次数。如下:
呃,本文写到这儿就应该结束了。最后附上SPSS程序的另一种写法,让大家稍微感受一下两种写法的差异。
1、Count功能的语法:
COUNT count=a1 a2 a3 a4 a5 a6 a7 a8 a9 a10(2).
VARIABLE LABELS count '选择满意的次数'.
EXECUTE.
2、另一种语法:
if (a1=2) count=1.
if (a2=2) count=sum(count, 1).
if (a3=2) count=sum(count, 1).
if (a4=2) count=sum(count, 1).
if (a5=2) count=sum(count, 1).
if (a6=2) count=sum(count, 1).
if (a7=2) count=sum(count, 1).
if (a8=2) count=sum(count, 1).
if (a9=2) count=sum(count, 1).
if (a10=2) count=sum(count, 1).
VARIABLE LABELS count '选择满意的次数'.
EXECUTE.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10