京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在安防行业的应用成果如何
多年期盼,大数据终于在蹒跚中来了。一经落地,其发展速度之迅猛,超乎行业想象,一时间无论是硬件制造商还是软件开发商,几乎都跟大数据或多或少扯上了关系。而大数据的落地及遍地开花,似乎昭示着安防产业即将再掀风云。
“安防大数据”的口号始终在延续,多年在“云端”,一度神一般地存在,却又捉不透、摸不着。不过在行业同仁的共同努力下,其终于开始“食人间烟火”了。作为新一代安防的寄托,大数据应用神技究竟练到了什么程度?今天我们就来扒一扒。
大数据拔高了安防入门门槛
大数据技术早在IT领域得到了应用,如当下的百度搜索引擎等,用的就是大数据技术;当安防提升到IT技术层面,产业将会面临两极分化的加剧。
从当前产业看,首先推出大数据技术的,清一色为主流设备商或颇具实力的平台厂家,比如IT背景的宇视科技,传统安防厂家海康威视、大华股份、苏州科达,软件平台商东方网力、中盛益华等,无一不是一方枭雄;中小企业与之相比,差距不断拉大。
其次是国内安防企业的国际领先性,从目前看,国际安防品牌企业也在跟进大数据技术的开发,但进度缓慢,此前一直牢据世界安防50强第一名的霍尼韦尔,还未见其在中国大陆的进一步动作;而泰科、UTC、安讯士、三星安防等众企业关于大数据的介绍也是鲜少得到披露;即便有,与大陆的大数据分析也存在很大的不同。
结构化偏科大交通
不可否认的是,交通是安防领域中人工智能发展最为成熟的科目,可识别的内容页包括拍摄方向、是否机动车、车牌号、车牌色、车标、车色、车身重要特征以及压黄线、闯红灯等违规检测,还可通过地感线圈或视频、微波感知车速。仅车标一种,目前已知可识别的种类就超过了3600种。
大数据的应用类型绝非车辆识别一种,不过从目前公开的大数据开发情况,除少数门禁平台外,几乎清一色都是针对车辆的检索应用。或许人员卡口产品的出现会稍微丰富大数据类型,但人员卡口是自科达的感知型摄像机推出后才获得快速发展,目前应用少、识别的准确性也还在不断提升当中,难以形成规模化应用。
应用:二次结构化才是重点
数据结构化是大数据应用的基础,即是将视频等非结构化数据经过处理分析后,提取视频特征,并以文本形式保存,同时对文本与原非结构化数据进行关联,以便在检索时能快速对应到原始数据。
数据的结构化主要有两种方式,一是成像时即进行结构化处理;二是通过后台服务器进行数据二次分析从而实现结构化处理。
从目前看,除了智能交通卡口摄像机和新一代人员卡口摄像机可以实现前端数据结构化,可直接将结构化数据提供给分析后台使用外,大部分摄像机都是非结构化或半结构化产品,可提供的结构化数据有限。
在实际项目中,品牌庞杂易造成兼容性、原有结构化前端可执行的结构化内容有限、非结构化设备量大等问题,后端结构化处理就渐渐成了重点,即二次结构化。
硬件选配:各显神通
就目前来看,各家二次结构化处理平台所采用的服务器均不一样,从2U到4U、单处理节点到多处理节点均有,服务器供应商也是品牌多样,如凌华、浪潮、IBM等均有;共同点都是基于英特尔高性能芯片开发的X86架构服务器、Linux操作系统。
从目前了解的情况看,海康威视采用的硬件应为4U多节点高性能服务器,最高支持160路1080P视频流实时处理;大华股份为2U4节点处理单元,支持每天600万张图片分析性能;东方网力应为2U处理机型;科达亦有可能采用的是2U处理机型。而宇视经过升级,最新的产品为2U服务器机型,实现了数据服务器与搜索引擎的二合一。
结语
大数据已经成为近几年IT技术发展的新亮点,也成为视频监控应用技术发展的重点之一,随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长,其中产生的绝大多数非结构化数据也给传统的数据管理带来了极大的挑战。
随着安防企业对大数据产业布局的展开,未来安防大数据价值也将得到进一步挖掘与应用,促进安防行业发展。对于如何利用大数据发挥安防与数据本身的应用价值,我们还需进一步探索,克服前进中面临的众多瓶颈问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27