京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个优秀数据分析师的准则
有很多的大学生或求职者都在问,现在好的数据分析师都在哪些行业、什么岗位,还有哪些专业是适合数据分析师专业的?
从不完全统计,现在数据分析师主要分布在互联网公司(包括电商、O2O、游戏、互联网金融行业)占70%,传统零售行业(多品类+大数据快消)占8%,咨询公司(数据挖掘类+市场研究类)占14%,金融行业(包括银行、证券)+电信+其它占8%;
从地域分布来看北京(40%)、上海(20%)、广深(20%)、杭州(10%);从教育背景来看包括数学、统计学、心理学、社会学、人口学、营销学;数据分析师人员流动情况,
1、咨询公司-->甲方(传统 or互联网公司),逆向几乎没有;
2、传统行业-->互联网公司-->互联网公司--->传统行业--->更大平台+核心业务+大数据量---->去中小平台做数据负责人;
3、毕业--->大型平台做技术--->二、三线公司做数据管理---->有一部回流到大型平台,更多是二三线公司更高的管理岗位;
4、毕业--->二、三线公司做技术专家方向---->二、三线公司分析骨干、管理岗--->大型公司专家岗+更小职级管理岗;
现在数据分析师的市场需要量是很大的,包括二三线互联网公司成为主流,大型平台型公司数据分析师更是成为与财务重要性等同的团队。
但是这个职业刚刚兴起,很多HR与企业都在一种摸索的状态,大家都知道现在互联网公司到C轮以上都需要分析团队来对于线上的数据需要进行整合、分析进一步希望能满足对于市场活动决策能力。
更大的范围现在都需要数据分析师对于经营决策提供依据及对于专题市场营销希望能更进一步提供全过程数据化运营与管理能力,但是数据分析工作性质及也是刚新起的工种,市场上还是对于人才缺乏判别能力,现在我说说好的数据分析师是怎么样?
格局是决定一个数据分析师的能力标准,一个好的数据分析师应该从行业的层面来分析公司现在所处的位置以及整个行业的分析,而且通过内外的数据得出富有逻辑性的结论,然后从这些结论中提供公司战略层面思考的策略,当然我也明白现在我们很多的分析师朋友都在沉浸在业务或者项目分析中,但是我认为格局观是决定一个数据分析师的能力标准。
那么怎么能用一句来总结数据分析师是什么呢?
基于内部与外部的数据结合通过严密的完整商业思考及严密逻辑推理,得出针对业务好坏的结论,并得出业务改进的策略。
什么内部与外部的数据的结合,我们即要看内部的数据还要结合行业的数据,而商业思考是做数据分析师通用的技能,那么结论是基本产出物,策略是分析师高级产出物。
数据分析师需要三类素质,第一类是基本素质,第二类是通用技能,第三类是专业技能。
基本素质包括:1、聪明与好奇心;2、愿意学习并愿意能沉下心来付出;3、耐心与专注。
通用技能是核心思考能与展现自己的能力,第一点,结构化的思考能力与逻辑推理能力即智商不能差,如果是这样你看到的越多就做的越好,怎么来判断呢?第二点,良好商业感觉与商业判断能力;第三点,要有宏观思考能力,你要看到的格局要到;第四点,要有良好沟通能力。
专业能力从专业上要有基本统计学知识,从能力上要包括扎实数据分析能力与数据处理能力包括SAS\R\SPSS及tableau、FineBI等可视化表达的能力。那么高级数据分析师,我们应该更看中基本素质与通用能力,如果专业操作类分析师那么我们需要基本素质与专业技能。
一个专业的数据分析师,发展到之后会知道往什么方向分析,能敏锐的观察出某个数据问题背后的原因,当然这是经验之谈。更多的时候我们需要借助SPSS、R等工具做挖掘分析,通过FineBI做实际应用过程中的业务分析。工具是次要的也是重要的,最终需要将挖掘到的信息规律转化到业务指导上来,制定正确的决策,才是硬功夫。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27