京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中apply家族中的系列循环函数总结
R语言中的以apply()函数为首的apply()家族,提供了强大而方便的循环功能,这些函数说起来简单,用起来可能就有点蒙圈儿了。这些函数确实简单,但是可能很多人搞不清这些函数究竟有什么用处与区别呢?R中不是已经有for循环了吗?其实作为一种与Matlab一样的向量化语言,用for循环会把本来速度就慢的R语言的速度拖的更慢,这就要用到apply()家族函数了,下面就对apply()家族中的函数分别做详细的介绍,以便于区别他们。
1、apply函数
apply()是用的最多,也是最好理解的函数了。比如
> x<-cbind(3,c(1:5,4:1))
x是一个9行2列的矩阵
> x
[,1] [,2]
[1,] 3 1
[2,] 3 2
[3,] 3 3
[4,] 3 4
[5,] 3 5
[6,] 3 4
[7,] 3 3
[8,] 3 2
[9,] 3 1
> apply(x,1,mean)
[1] 2.0 2.5 3.0 3.5 4.0 3.5 3.0 2.5 2.0
> apply(x,2,mean)
[1] 3.000000 2.777778
这里第一个参数表示应用的数据为x,第三个参数为应用的函数名(这里是平均值函数),第二个参数取1表示对9行数据求每行均值,取2表示对2列每列求均值。其实对于一个三维数组,第二个参数取3表示对第三维分别应用指定的函数。比如
> x<-array(c(1:24),dim = c(2,3,4))
> x
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> apply(x,3,mean)
[1] 3.5 9.5 15.5 21.5
这里,由于x的第三维有4个组,因此循环进行了4次,得出了4个值。当然了,这里的指定函数也可以是自定义函数。
2、lapply函数
apply()函数主要是对向量进行循环,而lapply()函数则在对列表元素进行循环时特别有用。
例一
> apply(x,3,mean)
[1] 3.5 9.5 15.5 21.5
> x<-list(a1 = c(1:8),a2 = c(TRUE,FALSE,FALSE,TRUE,TRUE))
> x
$a1
[1] 1 2 3 4 5 6 7 8
$a2
[1] TRUE FALSE FALSE TRUE TRUE
> lapply(x,mean)
$a1
[1] 4.5
$a2
[1] 0.6
这里用lapply()函数指定用mean对列表的2个元素进行遍历求均值,这里列表的第二个元素为布尔型,显然将其0~1对待,求出了均值。
例二
> lapply(x,quantile)
$a1
0% 25% 50% 75% 100%
1.00 2.75 4.50 6.25 8.00
$a2
0% 25% 50% 75% 100%
0 0 1 1 1
这里用lapply()函数指定quantile给出了x的分位数。
3、sapply函数
看下面例子
> sapply(x,quantile)
a1 a2
0% 1.00 0
25% 2.75 0
50% 4.50 1
75% 6.25 1
100% 8.00 1
显然,我们发现这里用sapply()函数也指定quantile求出了x的分位数,与lapply()函数不同的是:sapply()函数默认返回的是一个矩阵,而lapply()函数返回的时一个列表。其实,在sapply()函数中如果返回的长度不一样不能生成矩阵时,才会生成一个列表。
> x1
$a1
[1] 1 2 3 4 5 6 7 8
$a2
[1] TRUE FALSE FALSE TRUE TRUE
这里自定义函数f()返回参数本身,x中两列不一样长,返回类型就为列表。
4、tapply函数
前面介绍的apply()、lapply()、sapply()函数提供的分组循环方式都很简单,tapply()函数提供了更强大、更灵活的循环方式,可能也更难以理解。
例一
> a<-as.factor(c(1,1,2,3,3))
> a
[1] 1 1 2 3 3
Levels: 1 2 3
> tapply(a,a,length)
1 2 3
2 1 2
这里tapply()函数有三个参数,第一个参数指定因子类型a为被循环对象,第二个参数指定a为指针参数,第三个参数指定应用的函数为求长度函数length,这里由于a的因子水平为3,故tapply()函数循环了三次,分别求出三个水平的出现次数。
例二
这里以warpbreaks数据集为例
> head(warpbreaks)
breaks wool tension
1 26 A L
2 30 A L
3 54 A L
4 25 A L
5 70 A L
6 52 A L
> summary(warpbreaks[,c(2:3)])
wool tension
A:27 L:18
B:27 M:18
H:18
warpbreaks的wool变量有两个分类,tension有三个分类。
> tapply(warpbreaks$breaks,warpbreaks[-1],sum)
tension
wool L M H
A 401 216 221
B 254 259 169
这里以warpbreaks的breaks变量作为应用对象,除去第一列(warpbreaks[-1])作为指针参数,第三个参数是应用求和函数。这里函数作用相当于一个分类汇总的功能wool有两个变量,tension有三个变量,一共有2x3 = 6种组合。比如wool = A,tension = L时求和所有breaks就是401。我们可以检验一下如下:
> sum(warpbreaks[which((warpbreaks$wool=='A')&warpbreaks$tension == 'L'),1])
[1] 401
显然,wool = A,tension = L时求和所有breaks就是401。
5、mapply函数
mapply()函数与tapply()函数还是比较相似的,不过与其它apply家族的函数相比,mapply()函数的另一个特点是它的参数顺序与其它函数恰好相反。
例一
> mapply(rep,1:4,4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4
这里mapply()函数有三个参数,第一个指定应用的 函数为rep,就是重复函数;第二个参数指定被应用的对象为序列4:1,第三个参数指定重复的次数分别为1:4,即4要重复一次,3要重复两次等。数据分析师培训
例二
mapply(function(x,y) seq_len(x)+y,c(1,2,3),c(10,20,30))
[[1]]
[1] 11
[[2]]
[1] 21 22
[[3]]
[1] 31 32 33
这里自定义了一个函数seq_len(x)+y,其中seq_len(x)函数作用是生成一个1:X的序列,比如:
> seq_len(3)
[1] 1 2 3
那么对c(1,2,3)就会依次生成1,1:2,1:3的序列,再分别加上10,20,30,就会得到那样的结果了。
可以看出,mapply()函数主要是对中间对象元素与第三个对象元素一一对应,分别应用前面的指定函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27