
sas正则式之prxparse. Prxmatch
今天分享的是我这几天用到的正则式的一个小总结,这部分的内容因为比较多,所以会分成几篇文章分享。
其实我们在做数据的过程中老是会听到别人说,r处理数据比sas好用,但是在我理解里,看你先接触那个软件,你都很熟悉r了,你还会再花两三年去写sas吗?所以学软件,只要学的精,其实都是共通的,r能做的文本清洗的,sas也可以。但是我不是说你就不要去学r,我自己也会学R,在工作中也需要结合使用。只是希望你们不要对sas有偏见,毕竟我深爱sas胜过男朋友。
话太多了哈,毕竟白羊座嘛。上代码:
options compress=yes;
data dd;
input string$40.;
datalines;
我始终都抢不到2017年1月25号的票啊
今天是2017年1月23号
现在时间是9点17分
其实我很想我的妈咪
;
run;
data ss;
set dd;
if _n_=1 then ret=prxparse("/\我/");
retain ret;
position=prxmatch(ret,string);
run;
结果图如下:
Prxparse这个函数不能单独使用,都是和其他正则函数一起结合使用的,这个结果就不用看ret了,运行是pdv层面的事,我就不多说,这里要关注的prxmatch函数返回的关键字的位置。
prxmatch(ret,string)
ret填入的是prxparse返回的一个逻辑数,即0和1,以上面的例子为例,假设prxparse在变量string中没有找到“我”这个词,那么返回的0,反之返回1.你问我为什么上面的结果ret中的值是1,那是因为ret记录的只是第一条观测的ret的值,这个变量你就直接不看就行了。但是你要记住prxmatch是怎么跑的。即ret在要那条观测判断为1时,prxmatch就执行,在string中“我”的位置并返回。这里中文占两个字符哈。
这是一个简单的例子,现在具体介绍下常用的一个关键字的表述。
例如:
1、 Prxparse(”/\d\d\d/”)寻找任意的三个数字,这里要注意的是关键字必须用{“//”}圈起来。
2、 Prxparse(”/\d+/”)寻找一个以上的数字,可以是1个也可以是100个
3、 Prxparse(”/\w\w\w* /”)寻找两个以及两个以上的字符然后以空格分隔,*号后面有个空格,你再多看几眼。譬如你要寻找屁屁 后者屁屁屁 你就可以这么写Prxparse(”/\屁\屁\屁* /”)
4、 Prxparse(”/\w\w? + /”)寻找一个或者两个字符以一个空格或者多个空格分隔。看清楚哈,?后面是有空格的哈。这个总结一下,就是字符多的用*号,空格和数字多个用+号。
5、 Prxparse(”/(\w\w) +(\d) +/”)寻找一个两个字符之间与一个数字相隔一个或者多个空格的字符。注意,在正则式中,空格也算的,所以写的时候要小心。那这里举个栗子,就是譬如 “我是屁屁 2 ”那么就会找到:“屁屁 2 ”。
现在列出经常用到的关键字返回的数据类型:
不准说你英文看不懂,我大学四级考了四年才过的人不也照样看了。看不看懂取决你愿不愿意看,难道从小学学到大学的英文都被狗吃了吗?数据分析师培训
看过关键字的表述,给出一些例子熟悉一些这些表述:
这是针对Prxparse函数的例子:
一下是针对prxmatch(返回string的位置)函数的例子:
现在来个现实生活中会碰到的问题。
寻找电话号码:
data ee;
input string$40.;
cards;
电话:(123)333-4444
两个电话:(800)234-2222 和 (908) 444-2344
没有电话
;
run;
data ww;
set ee;
if _n_=1 then ret=prxparse("/\(\d\d\d\) ?\d\d\d-\d{4}/");
retain ret;
position=prxmatch(ret,string);
run;
结果:
prxparse("/\(\d\d\d\) ?\d\d\d-\d{4}/");这条正则式的意思是:
匹配有括号里中3个数字,然后不知道有木有空格为间隔之后再接三个数字之后加一个横杠之后加4个数字。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05