京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优秀数据分析团队应该做好这些事情
Q:数据分析团队如何给自己找活干?
当业务部门没有提出分析想法,各方面数据看板已经做得很完善的情况下。数据分析团队如何给自己找活干,面对那么多业务部门,如何从一个部门下手再贯穿所有部门?
根据我的了解,题主的工作内容是偏数据工程师一点的,不过题目是问的是数据分析团队,所以就我有限的见识,抛砖引玉讨论一下数据分析团队如何给自己找活儿干。
为方便说明,这里以知乎为假想例子(也就是说都是我瞎掰的)。
比如说以用户注册过程为例,主要包括潜在用户通过某种方式到达知乎注册页面(比如说搜索,或者朋友圈分享的答案、文章),开始注册流程(邮箱注册?电话注册?),注册成功之后的一系列动作,比如关注了哪些话题、是否更新个人资料,是否有进一点互动(比如说点赞或者答题)等
数据报表 (dashboard report)
题主提到“各方面数据看板已经做得很完善”,那么可以试着从以下几个方面入手?
a. 不同维度的完善
比如说现在报表包括了注册整个过程的数据,那么是否有按用户性别、年龄等,地点(国家),使用设备(Andriod, iOS 等),来源(搜索引擎?朋友圈分享?微博分享?),注册方法(手机号?邮箱?)等来做分类呢?
b. 数据的时间精度
我们知道微信公众号是提供每天的数据追踪的,如果能够有更精细一点的数据,比如说按小时的,是否会提供更多的信息呢?以上面知乎注册数据为例,有每天的数据当然很好,但是假设现在半夜 12 点突然因为某些原因不能通过手机号注册了,而且只是在页面端有这个问题。如果没有时间精度更高的数据,而只能看每天的话,那类似这样的问题可能就没法发现或者需要过一两天才能发现了。
类似的,比如知乎日报想看每天几点推送效果更好,可以尝试在不同的时间段推送,然后看每天的阅读量、互动等,但是如果能够实时看推送之后的效果,自然比看每天的数据更有说服力。
c. 数据的完善度
理论上来说数据永远只能部分代表实际情况的,不可能把所有情况都一一记录下来。比如说在记录用户注册的过程中,是否记录了用户注册失败的情况?比如说用户名已经存在?用户名已经存在的情况下,是用户忘了密码呢?还是本来应该点登录的,结果点成注册导致失败了?注册失败之后下一步动作是什么?假如有这些数据,可以带来什么分析结果?
d. 数据的可靠性
数据并不总是 100% 可靠的,那么如何提高这个可靠性?如果建立一个大家都可以用、都可以信任的数据系统?当然这更多是属于数据工程师的活儿,跟数据分析有点差别。但是另一方面来说,数据分析过程中也是可以发现一些数据存在的问题,提供反馈进一步改进的。
开拓性数据分析
有完善的数据报表是一件很好的事情,但是绝不能止步于此。
a. 给业务团队提供方向
业务团队应该有自己的想法接下来应该做什么,或者说至少有个大致的想法,同时数据分析在这里也能起到很重要的作用,有时候是确定哪些项目比较重要,影响力比较大,有时候是找到新的方向。
比如通过数据发现,注册错误里有一部分是因为用了海外的手机号,导致无法收到确认码,那么就可以考虑如果解决这个问题了。还有一部分是因为用的邮箱收不到确认邮件导致注册失败。假设现在工程团队资源有限,只能干其中一个,如何确定优先级?
再比如说数据分析发现很多文章浏览量来源于微信朋友圈,那么添加通过微信登陆的功能,有什么好处,又有什么坏处?
b. 了解用户
数据分析可以改进产品,很多时候可以通过分析用户的行为来得到一些想法。比如说对比一下文章和答案的赞数和评论数会发现,有一些文章和答案的评论数/赞数非常高,说明在评论里有很多互动,但是赞同文章的人却很少。再进一步分析可能发现,有时候是因为读者强烈反对文章或者答案,所以评论区很热闹,有时候是因为大家在评论区里聊天,如此种种。那么这些信号是否能够用在知乎时间线的排序上?是否有必要给文章也增加“反对”的按纽?是否有必要给评论也排序而非单纯的按照时间来?
c. 设定目标
跑过马拉松的人可能都了解领跑者的重要性(我没跑过,别问我怎么知道的),因为有人在前面带节奏,跟着合适的目标按照适合自己的节奏跑就可以了,不至太快跟不上,也不至于太慢而没有发挥自己的潜力。
数据分析也可以起到类似的作用,给团队设定一个合适的目标,而不是脑袋一拍,能不能完成天知道的。有时候目标设得太高,团队拼死拼活也完不成,有时候又目标太低,不能发挥团队的潜力。
数据基础架构 (data infrastructure)
这方面可能也更多的是数据工程师的职责,不过数据分析团队也是可以在其中发挥一定的作用的。
a. 方便团队做测试
比如说是否有系统能让工程师们方便的做测试,不需要专门的人来做 A/B 测试的数据分析?
b. 方便团队使用数据
比如说产品经理要看这周和上周的对比,一些常用的数据是否可以直接有报表呈现。如果有某个特定的方面需要进一点查看的,是否有好用的 UI 点几下就可以?如果产品出现什么问题(比如说注册页面挂了),是否有系统能够及时报警,并且能够快速查明原因?
c. 自动化分析
比如说写个程序把一些常用的分析过程给自动化了?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20