京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以大数据为媒 环保驶入物联网时代
借助物联网技术的智能应用推动环境保护工作的发展是当前国家工作的重中之重。
物联网作为全球下一个万亿元级的新兴产业,被视为继计算机、移动通讯后,信息技术产业发展的又一次浪潮,将深刻改变人类的生产和生活。而绿色发展作为五大发展战略之一,资源节约型、环境友好型发展道路,也是我们国家未来发展的一条主线。随着物联网技术迅猛发展,物联网逐渐进入环保领域,即环保物联网。
环保物联网
环保物联网又称智慧环保,是数字环保的发展和延伸。它借助物联网技术,将传感器嵌入各类监测对象中,对环境变化实现精准感知,再利用无线通讯和卫星等先进的通讯技术实现数据的传输和共享,最终由云计算、虚拟化和高性能计算等技术手段,整合、分析和储存信息,从而提供更加合理的解决方案。
从结构上看,环保物联网可分为三层结构。基础层(感知层)主要包括污染治理设施(污染源)现场端的感知,使用现代化的传感器、分析仪、智能仪表等。通信层的主要作用是实现感知层数据的传输,主要包括有线和无线两种数据传输方式。数据应用层一方面通过数据分析,得出相关的结论支持环保管理决策;另一方面通过远程控制来优化环保治理设计的运行流程。
业内表示,物联网应用于环保领域是信息通信技术发展到一定阶段的必然结果,也是环保信息化的必然趋势,将成为推动环境管理升级、培育和发展战略性新型环保产业的重要手段。
环保物联网可以做什么?
利用“电子眼”监控污染源。数据通过有线专网或无线的网络传输方式将污染源在线监控数据传回监控中心;在线监控数据进入数据库后,实时进行生成数据并自动进行分析,生成监测数据报表;同时,出差人员或监察执法人员可以通过无线通讯设备在移动状态查看在线监测数据。准确确定污染源的信息,提升环境质量数据的精确性。
建立监测预警体系,有效监管对突发环境风险。通过物联网技术实现对水、气、声、土壤、生态等环境要素,特别是对核与辐射、危废、医废等危险源进行全方位的监测,从而准确预警各类环境突发事件、全面反映环境风险和质量的状况和趋势,实现对突发环境风险的预警预测、应急准备、应急指挥和响应以及事后管理。
环保物联网应用发展历程
20世纪末期,我国启动传感网研究后,环保作为应用试点领域之一,开始RFID等技术的初步应用;2005年,国家环保总局公布《污染源自动监控管理办法》,环保物联网技术在环保领域取得小范围的应用;2009年,国务院总理温家宝提出要加快推进物联网发展、建立中国感知中心。
发展前景可期
众所周知,环保物联网的应用范围十分广泛,有着巨大的发展前景,是国民经济中一片有待开发的蓝海。物联网作为先进科技的的产物,必定会给环境保护及新能源产业带来新的发展机会,随着依托物联网建立的智能环保产业链逐渐形成,环保产业必定会迎来不可估量的增长。
台北大学自然资源与环境管理研究所李坚明博士曾表示,基于物联网技术,环保产业将出现新商机,个人碳权交易具有市场潜力。全球约有70亿吨碳排放纳入碳价机制,2017年中国也将实施相关政策以适应全球碳市场变化。通过智能手机应用程序、物联网、实时O2O与云端服务技术,个人参与碳交易在未来有可能实现。
污染源自动监控系统是目前国内最大的物联网,但监控范围仍不够大,经常会产生漏监。鉴于此,西安交大环保大数据研究中心主任林宣雄预言,未来,环保领域将出现千亿级公司,运用商业的方式解决环保问题。
环保部门如何运用?
目前,物联网在环保领域的发展与应用仍面临许多挑战,如信息孤岛化严重、数据资源开发利用不足、政企监管体系尚不完善、设备维护和使用效率低等问题,尤其是环保物联网标准体系的建设尤为迫切。
在环保物联网的时代,相比以往的信息化,需要从技术、业务和产业整体的角度进行变革,从整个环保生态体系建设的角度,真正让物联网技术为环保去服务。而物联网的本质是万物相联,感知是物联网的先行技术,没有感知,就无法得到数据,也就没有了物联网的信息基础,业内人士建议,应创新传感器技术,大力发展传感器产业。
此外,还应以创新生态环境监测技术为重点,进一步促进物联感知与互联网、智能终端、云计算等方面的互联互通,提高生态环境信息的获取效率,把生态环境的管理跟现代技术紧密地结合在一起。加快生态环境大数据规范化、标准化建设,实现不同要素、不同类型信息的规范利用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21