
一、分类算法中的损失函数
在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式:
其中,L(mi(w))为损失项,R(w)为正则项。mi的具体形式如下:
对于损失项,主要的形式有:
0-1损失
Log损失
Hinge损失
指数损失
感知损失
1、0-1损失函数
在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值fw(x(i))与真实值y(i)的符号是否相同,0-1损失的具体形式如下:
以上的函数等价于下述的函数:
0-1损失并不依赖m值的大小,只取决于m的正负号。0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。
Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下:
运用Log损失的典型分类器是Logistic回归算法。
对于Logistic回归算法,分类器可以表示为:
为了求解其中的参数w,通常使用极大似然估计的方法,具体的过程如下:
1、似然函数
其中,
2、log似然
3、需要求解的是使得log似然取得最大值的w。将其改变为最小值,可以得到如下的形式:
由于Log损失的具体形式为:
Logistic回归与Log损失具有相同的形式,故两者是等价的。Log损失与0-1损失的关系可见下图。
Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下:
运用Hinge损失的典型分类器是SVM算法。
对于软间隔支持向量机,允许在间隔的计算中出现少许的误差,其优化的目标为:
约束条件为:
对于Hinge损失:
优化的目标是要求:
在上述的函数中引入截距γ,即:
并在上述的最优化问题中增加L2正则,即变成:
至此,令下面的不等式成立:
约束条件为
则Hinge最小化问题变成:
约束条件为:
这与软间隔的SVM是一致的,说明软间隔SVM是在Hinge损失的基础上增加了L2正则。
指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下:
运用指数损失的典型分类器是AdaBoost算法。
AdaBoost算法是对每一个弱分类器以及每一个样本都分配了权重,对于弱分类器φj的权重为:
其中,表示的是误分类率。对于每一个样本的权重为:
最终通过对所有分类器加权得到最终的输出。
对于指数损失函数:
可以得到需要优化的损失函数:
假设f~表示已经学习好的函数,则有:
而:
通过最小化φ,可以得到:
将其代入上式,进而对θ求最优解,得:
其中,
可以发现,其与AdaBoost是等价的。
5、感知损失
5.1、感知损失
感知损失是Hinge损失的一个变种,感知损失的具体形式如下:
运用感知损失的典型分类器是感知机算法。
感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为:
对于感知损失:
优化的目标为:
在上述的函数中引入截距b,即:
上述的形式转变为:
对于max函数中的内容,可知:
对于错误的样本,有:
类似于Hinge损失,令下式成立:
约束条件为:
则感知损失变成:
即为:
Hinge损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。数据分析师培训
import matplotlib.pyplot as plt
import numpy as np
xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss")
plt.plot(xx, np.exp(-xx), 'c-', label="Exponential loss")
plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18