京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据or安全 企业风险管控的变革之始
如今,企业中用来检测高级安全威胁和支持业务发展的数据量呈指数级增长,与此同时企业安全管理人员也经常被要求要整合不同来源和连接点的数据,并对可能出现的网络攻击或数据泄露进行检测。这种依赖于手动操作来梳理庞大的数据是导致关键问题无法得到及时处理的主要原因之一,这也解释了为何“大数据的安全”常被认为是个烫手山芋,尽管它在企业安全中低调地扮演着重要角色。
大数据安全领域的噱头不少,虽然它通常被应用在刺激企业营收的文案中,但是大数据代表了安全从业者需要面对巨大的挑战。一些规则犹如雨后春笋般出现,如PCI DSS 3.0,NIST,FISMA等。安全状态评估更为频繁,而不断增加的网络攻击也使安全问题更棘手。在Gartner Neil MacDonald 2012年3月的文章《信息安全正成为大数据分析难题》中,作者写道:“到2016年,企业信息安全组织分析的数据量每年都将翻倍。届时,40%的企业都会主动分析至少10T的数据用于搜集信息安全情报,较之2011年,涨幅将近3%。”
为确保实现合适的聚合,许多组织都依赖多个基于大型数据存储的工具,(例如,欺诈和数据丢失防护、漏洞管理、SIEM)以生成必要的安全数据。这只会增加要分析,标准化和优先的数据服务的数量,速度和复杂度。这和自适应验证不同,自适应验证被用于支付行业里防御诈骗的行为模式自动分析,而许多常用的安全工具都缺乏自助分析的能力。要被分析的安全数据规模也变得太庞大太复杂,从而难以掌控。现在要拼凑一幅可行的蓝图需要几个月甚至几年的时间。
不幸的是,依赖手动操作来梳理这么庞大的数据导致重要事情无法得到及时处理的主要原因之一。根据2013年 Verizon 数据泄露调查报告统计,69%的数据泄露都是由第三方组织发现的,而并非通过内部资源发现。
其实,安全工作的最终目的是减少攻击者可以利用的软件或网络配置漏洞的缺陷。大数据集有助于把指定的行为放到语境中,但是还存在一些要克服的技术挑战。在大型数据存储中运行的传统安全工具也会把业务临界纳入考虑之中,以便处理大型数据集时做优先纠正的操作。
这就引出了一个问题,企业如何才能在不雇佣大量新员工的前提下利用大数据安全呢?
虽然安全产品的监控产生了大数据,但是根本上来说这只是手段而不是目的。最终,信息安全的决策的制定应该是源自于从数据中得出优先可操作的洞察力。为了实现这个目的,需要大量的安全数据和企业的业务关键性的风险或组织关联起来。如果没有基于风险管理的方式,企业可能把有价值的IT资源浪费到解决无关紧要的漏洞上。而且,需要过滤庞大的安全数据来判断与特定持股人的责任相关的信息。在大数据利用方面,没有谁的需求和目的是完全相同的。
为了应对大数据的安全性,实现可持续的诊断,进步组织正在利用大数据风险管理系统将很多用手动操作的劳动密集型任务转为自动操作。这些系统互相连接数据库安全和IT工具,对其产生的数据进行持续关联和评估,从而采取预防式的主动防护措施。反过来,这样又让企业可以实现一个闭合式,基于风险的自动纠正进程。这样可以节约大量的时间和成本,提高准确度,缩短修复周期,而且能提升整体运行效率。
大数据风险管理系统使企业能够把威胁和漏洞变得可视化和可操作,同时也让他们可以在安全规则被破坏前,优先解决高风险的安全问题。最终,将网络攻击的影响降到最低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24