京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据or安全 企业风险管控的变革之始
如今,企业中用来检测高级安全威胁和支持业务发展的数据量呈指数级增长,与此同时企业安全管理人员也经常被要求要整合不同来源和连接点的数据,并对可能出现的网络攻击或数据泄露进行检测。这种依赖于手动操作来梳理庞大的数据是导致关键问题无法得到及时处理的主要原因之一,这也解释了为何“大数据的安全”常被认为是个烫手山芋,尽管它在企业安全中低调地扮演着重要角色。
大数据安全领域的噱头不少,虽然它通常被应用在刺激企业营收的文案中,但是大数据代表了安全从业者需要面对巨大的挑战。一些规则犹如雨后春笋般出现,如PCI DSS 3.0,NIST,FISMA等。安全状态评估更为频繁,而不断增加的网络攻击也使安全问题更棘手。在Gartner Neil MacDonald 2012年3月的文章《信息安全正成为大数据分析难题》中,作者写道:“到2016年,企业信息安全组织分析的数据量每年都将翻倍。届时,40%的企业都会主动分析至少10T的数据用于搜集信息安全情报,较之2011年,涨幅将近3%。”
为确保实现合适的聚合,许多组织都依赖多个基于大型数据存储的工具,(例如,欺诈和数据丢失防护、漏洞管理、SIEM)以生成必要的安全数据。这只会增加要分析,标准化和优先的数据服务的数量,速度和复杂度。这和自适应验证不同,自适应验证被用于支付行业里防御诈骗的行为模式自动分析,而许多常用的安全工具都缺乏自助分析的能力。要被分析的安全数据规模也变得太庞大太复杂,从而难以掌控。现在要拼凑一幅可行的蓝图需要几个月甚至几年的时间。
不幸的是,依赖手动操作来梳理这么庞大的数据导致重要事情无法得到及时处理的主要原因之一。根据2013年 Verizon 数据泄露调查报告统计,69%的数据泄露都是由第三方组织发现的,而并非通过内部资源发现。
其实,安全工作的最终目的是减少攻击者可以利用的软件或网络配置漏洞的缺陷。大数据集有助于把指定的行为放到语境中,但是还存在一些要克服的技术挑战。在大型数据存储中运行的传统安全工具也会把业务临界纳入考虑之中,以便处理大型数据集时做优先纠正的操作。
这就引出了一个问题,企业如何才能在不雇佣大量新员工的前提下利用大数据安全呢?
虽然安全产品的监控产生了大数据,但是根本上来说这只是手段而不是目的。最终,信息安全的决策的制定应该是源自于从数据中得出优先可操作的洞察力。为了实现这个目的,需要大量的安全数据和企业的业务关键性的风险或组织关联起来。如果没有基于风险管理的方式,企业可能把有价值的IT资源浪费到解决无关紧要的漏洞上。而且,需要过滤庞大的安全数据来判断与特定持股人的责任相关的信息。在大数据利用方面,没有谁的需求和目的是完全相同的。
为了应对大数据的安全性,实现可持续的诊断,进步组织正在利用大数据风险管理系统将很多用手动操作的劳动密集型任务转为自动操作。这些系统互相连接数据库安全和IT工具,对其产生的数据进行持续关联和评估,从而采取预防式的主动防护措施。反过来,这样又让企业可以实现一个闭合式,基于风险的自动纠正进程。这样可以节约大量的时间和成本,提高准确度,缩短修复周期,而且能提升整体运行效率。
大数据风险管理系统使企业能够把威胁和漏洞变得可视化和可操作,同时也让他们可以在安全规则被破坏前,优先解决高风险的安全问题。最终,将网络攻击的影响降到最低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07