
传统零售企业如何玩转大数据
在零售行业不断变化发展的今天,数据成为当下最热的行业话题之一,从各方面的信息来看,我们的确进入了IT向DT时代转型的一个重要时期。如今的零售行业,不论是电商还是传统零售对数据都非常重视。
但是,传统零售因技术手段和实体店的营业环境影响,在数据收集、分析、保护、返回终端使用上遇到较大挑战。怎么利用现代化的科技手段,加速门店端的科技化转型,扩宽数据收集渠道,合理分析数据并尽快在终端销售使用,真正走向全新的零售成为传统零售所要面对的重大课题。
数据采集“软件”“硬件”都要硬
零售数据的采集需要相关的软硬件,而传统零售企业,大部分对IT投入不足,因此这方面的业务多为第三方提供。如今,市面上提供相关硬件服务的服务商很多,而提供软件服务的就极其匮乏,能够在软硬件都有一定建树的就更是寥寥无几,而英特尔就解决了这类问题。
众周所知,英特尔是世界上最大的硬件公司,同样英特尔也有着世界上最大的软件研发团队。
据悉,英特尔软件研发团队规模超过万人,而硬件与平台软件解决方案之间的优化、适配就是很重要的一项工作。而为了离用户更近,英特尔与很多业内的软件服务商都达成了合作,比如与hadoop解决方案提供商Cloudera的合作。
据了解,英特尔正在引领业界大数据基准测试的标准化,制定了Big Bench、High Bench的测试标准。在机器学习方面,通过硬件、软件的同步提升、优化帮助客户提高机器学习模块的可扩展性。
在物联网领域,如何更好地将数据收集和商业决定实时结合,英特尔和浙江大华在视频监控领域已取得合作成果。
大数据是英特尔发展最快的领域,每年在全球以31%的速度递涨,这还是保守估计。英特尔在软硬件的造诣能够圆满解决传统零售在收集大数据是软硬件的顾虑。
数据的利用在于精准营销活动优化
数据的价值在于精准营销,利用精准营销,零售商们将数据转变为可行的洞察,进而实施更智能的活动。例如,以往的历史购买数据可用于预测哪些顾客最有可能购买新产品。
产品使用信息可用于预测哪种新功能将具备最高的市场影响力。利用从社交媒体收集的数据,可以更轻松地确定下一个流行或潮流产品。
如果使用得当,数据可帮助零售商更深入地了解顾客的购买历史,然后他们就可以据此预测顾客的购买时间,并蓄势以待。
数据的使用方法多种多样,从客户购物时自动生成的“穿戴建议”,到更为高级的活动优化,它们都能帮助零售商最大程度地发挥营销预算的价值。
通过采取最佳的精准营销实践,您可以举办针对性更强且更有效的活动。您不但能够提供精准的产品建议,还可以采用多种方法从新数据和现有数据中获取价值。
试想一下,通过按地区划分顾客,并以更具针对性的价格吸引他们前往门店,借此来加快某家门店存储过量产品的销售速度。或者针对不断变化的客户群调整通知和报价。
通过适时向正确的人发送正确的信息,您可以实现精准营销,以此降低活动成本,并提升交易达成率。
除了传达活动优化之外,数据也可以用来提升供应链的效率(通过帮助您实现更精准的需求规划),借此增加高价值货物的周转次数。
然而许多传统零售商在收集数据后,面对庞大的数据群,只能做简单的分析,对高要求高精准的营销分析则一筹莫展。
基于英特尔技术构建的零售企业,以最大化数据价值,致力于简化数据处理流程的可管理性,降低其复杂程度,同时确保端到端的安全性。
现在,最新的SAS解决方案联合下一代英特尔至强处理器强大性能,使零售商能够在更短的时间内运行更复杂的分析。
数据改变终端零售体验
随着用工成本和土地成本的上涨,为节约成本,各大实体零售都在不同程度的裁员。人员的紧张导致卖场服务人员的缺乏,顾客购物体验下降。
特别是当顾客需要某产品时,现场服务人员无法迅速知道商品是否还有库存,如果仓库寻找,就会导致现场没有服务人员的尴尬,而且常常因库存偏差导致顾客体检极度丧失。
据报道,库存过剩、缺货和损耗等库存偏差给全球零售商造成了近 1.1万亿美元的损失。举例来说,仅库存损耗一项就可会给美国零售商造成 420亿美元的损失,这一数字几乎占总零售额的1.5%。
据Retail Touch Points调查发现,配备了基于英特尔处理器的平板电脑和智能手机的门店,顾客满意度显著提高,英特尔构架平板电脑和二合一设备,让零售商能够扩大技术和信息的使用范围,并将其交付给现场服务的员工手中。
这种设备首先可以提高员工对产品的专业度,其次他还能支持店员无需前往库房便可以随时查看可用库存从而保证与顾客之间的互动不会间断,最后他还可以提供移动支付功能,减少收银排队。使用这种设备,可以解决员工不足导致的顾客体验缺失的现象。
零售商通过使用英特尔良好的软硬件设施对前端消费数据,商品数据采集,后端及时深入分析,然后通过精准营销吸引顾客到店,而基于英特尔架构二合一平板电脑和智能手机设备又可以解决销售前线员工专业性和服务人员缺乏的问题。一举多得,英特尔提供了解决数据时代传统零售困境的整体解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11