京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS应用重复测量数据的统计方法
重复测量设计,即对一组或多组受试对象,在k个(k≥2)不同的时间点上,从每个人体(或样本)上重复观测同一个指标的具体取值的设计。如临床研究中,需要观察患者在不同时间的某些生理、生化或病理指标的变化趋势,或治疗干预后不同时间或疗程的疗效特点,就要进行重复测量设计。重复测量数据间存在相关性,不符合方差分析要求,所以重复测量数据资料需要采用专门的统计分析方法,该方法也是近代统计学研究的热点之一。
对于重复测量数据(临床上常称纵向监测数据),实质上每个受试对象的观察结果是多次重复测量结果的连线,统计分析的目的是比较这些连线变化趋势的特征。重复测量试验数据的方差分析需要考虑两个因素,一是处理分组,二是测量时间。可采用的统计分析方法:1. 多元方差分析方法;2. 重复测量数据的方差分析。
重复测量数据的变异由两大部分组成。一是观察对象间差异,二是重复测量间差异。观察对象间差异包括处理组间差异和观察对象个体间变异两部分;重复测量间差异包括测量时间之间差异、处理与测量时间的交互作用和组内误差三个部分。因此,重复测量数据的总变异可分解为处理组、测量时间、处理组与测量时间的交互作用、观察对象间随机误差以及重复测量误差等五个部分。
重复测量资料统计前提条件是首先要求样本是随机的,除了满足一般方差分析条件外,特别强调满足协方差阵球形性——球形检验。球形检验(Mauchly):如果P值大于α (如果α=0.05,即p>0.05),说明协方差阵的球对称性质得到满足。若球对称性得不到满足,方差分析的F值是有偏的,会增大Ⅰ类错误的概率,则需校正。否则,必须对与时间有关的F统计量的分子和分母自由度进行调整,减少Ⅰ类错误的概率。调整系数为:ε(epsilon)。
SPSS操作示例
SPSS: Analyze » General Linear Model » Repeated Measures
选择重复测量方法
指定对应的测量值
选择Post Hoc
选择Model
选择Option
五次重复测量量的变量名
分组变量情况
各组各个时间点的详细数据描述
结果解读与展示
注:各个时间点存在性差异,而且与组别交互中,也存在显著性差异。
球形检验结果
注:不同时间点存在显著性差异,不同组别对各个时间点的结果存在影响。
各重复测量间变化趋势的分析
注:不满足线形和二次方趋势;勉强拟合三次或四次曲线,但仅5次测量,要慎重采用。
组间效应的方法分析结果
注:组间比较无显著性差异。
两两比较结果
五次测量的均数图
结果
结论:该治疗方法对三组糖尿病患者的糖化血红蛋白的降低无明显差异。
重复测量数据采用一般线性模型(GLM)方法进行测量,这是使用极为广泛的方法。不仅能做多个因素,多个水平的统计,还能控制协变量,从而得出更可靠的结果。甚至临床上多组之间比较,也更倾向采用GLM,而不是ANOVA方法。
虽然GLM的统计理论很复杂,但是作为临床医生更重要的是识别统计方法,合理应用,以及合理解读结果即可,不必吃透复杂的统计原理。重复测量数据采用一般线性模型(GLM)方法,今后运用会越来越广泛,值得大家重视。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27