京公网安备 11010802034615号
经营许可证编号:京B2-20210330
昨天和学长聊到下周要做的数据清洗工作,心想应该很好上手吧,结果今早爬起来一问度娘,立马就被灌了整锅的毒鸡汤…某论坛上的网友甚至告诉小编,数据清洗占了他某项工作中的八成分量,是绝对的大工程…
额…好吧,尽管小编还是这方面的零基础学员,鼓捣了一整天依然图样图森破,但是在“还要多学习”的精神指引下,还是来跟大家分享一点学习中的收获吧。
前方预警:大神请绕行~
在开始今天的介绍之前,有几点说明:
1. 这次介绍的代码主要针对重复值、缺失值和字符中的空格等情况的处理;
2. 由于篇幅限制,演示中导入csv格式文件作为数据来源;
3. 请在“文件”菜单中把R软件的“当前工作目录”改为导入文件所在目录;
![]()
4. 本次使用的数据是世界银行数据库中的“国家政策和制度评估(CPIA):公共部门管理和机构集群平均值(1=低至 6=高)”数据;另外,为使清洗效果更明显,我对其做了点“手脚”,让其显得“更乱”:
那么,这么“脏乱”的数据该咋“洗”呢?具体步骤如下:
1. 读取并创建数据表。可以通过查看数据表前5行看看是否读取;
#读取并创建数据表
data=data.frame(read.csv('CPIA.csv',header =1))
#查看数据表前5行
head(data)
![]()
2. 清洗特定列的重复值。R语言的返回结果为:重复的标记为TURE,不重复的值标记为FALSE;下面以清洗“国家名称”这一列的重复值为例,其他各列依次完成;
#重复值清洗
duplicated(data$Country.Name)
![]()
#删除重复值,返回唯一值列表
data=unique(data)
#查看清洗结果
duplicated(data$Country.Name)
![]()
3. 空值清洗。
(1)如果查找数据表中的空值,则代码为:
#查找数据表中的空值
head(is.na(data),n = 264)
需要注意的是,这里的264是数据容量,R语言的返回结果依然是空值标记为TURE,非空值标记为FALSE;
(2)如果查找特定列中的空值,则代码如下(以2015年数据为例):
#查看特定列中的空值
is.na(data$X2015)
(3)处理空值的方式有两种,将空值填充为0或删除空值所在行;
#将空值填充为0
data[is.na(data)] <- 0
#删除空值所在行
data<-na.omit(data)
4. 去除特定列中字符间的空格。需要安装并加载raster包,以“国家名称”列为例;
#提取“国家名称”列
Country.Name=as.vector(data$Country.Name)
#安装raster包
install.packages('raster')
#加载raster包
library(raster)
#去除“国家名称”字段中的空格
Country=trim(Country.Name)
#覆盖原有“国家名称”字段
data$Country.Name=Country
5. 另存为新文件,供后续分析;
#保存为csv文件
write.csv(data,file="CPIA1.csv")
![]()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16