京公网安备 11010802034615号
经营许可证编号:京B2-20210330
字符串长度函数:
length():返回向量元素的个数、矩阵元素的个数、数据框字段数量和列表元素的个数。
nchar(): 返回每一个字符值的字符数
cat()函数可以显示和连接字符串。该函数可以将字符值合并,并直接打印在屏幕中, 该函数成为在函数内部打印消息或警告信息的理想函数,而paste()函数和print()函数输出效果不理想。
发现,用print函数和paste函数在屏幕中输出带引号的字符串,总觉得有点别扭。
cat()函数中使用'\n'参数为换行符,确保改行的完整信息。'\t'为4字节的空格
cat()函数的参数fill可用于输出字符串中自动插入换行符,如果fill设置为TRUE,则系统的width值将被用来确定行宽, 如果fill参数为一个给定的数值,则输出结果的宽度将使用该值。
cat()函数中有一个参数为file,该参数允许输出结果指定到一个文件中。
paste()函数可以无限量的连接字符串,当把一个 字符向量 传递给paste()函数时,通常使用 collapse=参数 ,因为sep=参数对输入的向量不起作用
substring()或substr()函数获取字符串的子串,first(start)和last(stop)参数可以是一个数值,也可以是一个向量。
在应用中强烈建议使用substring()函数,该函数更为稳定
为了找到字符串中一个特定字符的位置,首先需要将字符串转换为字符向量(可以向substr函数的first和last参数传递向量来完成),然后通过which函数确定某个字符的位置。
正则表达式是一种表达字符值模式的方法,可以被用来提取字符串的一部分或以某种方式修改这些字符串。这里主要讲解R中常用的6个正则表达式函数(split,grep,regexpr,gregexpr,sub,gsub)
strsplit()函数可以使用字符串或正则表达式将字符串划分为更小的段,该函数的第一个参数是要拆分的字符串,第二个参数是用来将字符串分解成多个部分的字符值或正则表达式。该函数将分解后的子段返回到列表中。
语法如下:
strsplit(x, split, fixed = FALSE, perl = FALSE, useBytes = FALSE)
应用:
发现,parts1中会单独把空格当做值列出来。
个人觉得这个方法还是繁琐了点,还请各位看官提出更方便简洁的方法~谢谢啦。
strsplit()函数还可以接受正则表达式来决定在哪里拆分字符串,例如,一个字符串中含有多个空格,当使用空格作为拆分符时,就可能返回多余的空字符串。
grep()函数接受一个正则表达式和一个字符串或字符串向量,并返回由正则表达式匹配的字符串元素的索引。 如果参数value=TRUE,则它将返回与正则表达式匹配的实际字符串而不是其索引号。
语法如下:其中x必须为字符向量
grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,fixed = FALSE, useBytes = FALSE, invert = FALSE)
应用:该函数的一个重要用途是依据名称从一个数据框中提取一组变量
如在LifeCycleSavings数据框中,存在两个变量,都是以'pop'开头,我们可以使用grep函数找到这两个变量
返回以某个字符开头或某个字符结尾的字符串
要查找的正则表达式不考虑输入的大小写时,可以使用ignor.case=TRUE
很显然第二个字符'work doggedly'就不是我们所期望的结果,为解决该问题,可以使用 转义尖括号(\\<dog\\>) 限制字符串被空格、标点符号或起始行或结束行包围情况下的匹配。
如果传递给grep的正则表达式与其任何输入都不匹配,grep将返回一个空的数值型向量, 换句话说,该函数可以用来测试一个正则表达式是否存在。
regexpr()和gregexpr()函数可用于准确指出和提取字符串中与正则表达式相匹配的部分,这两个函数的输出为一个向量和列表,由所发现的正则表达式的起始点组成;如果没有匹配发生,返回值为-1,此外,match.length属性与起始点向量结合, 提供字符匹配的准确信息。regexpr函数只提供其输入字符串中第一个匹配的有关信息,而gregexpr函数返回所有匹配的信息。
语法如下:
regexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)
gregexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)
应用:
提取出匹配的字符
在这里使用另一个处理输出的函数mapply,该函数的第一个参数为函数, 接受多个参数,其余参数是长度相同的向量,其元素将逐一传递到函数中。
sub()和gsub()函数是基于正则表达式的文字替换,它们均接受正则表达式的输入参数。
sub()函数只改变第一次出现的正则表达式,而gsub()函数可以替换所有满足正则表达式的字符。
这两个函数的一个重要用途涉及到数值型数据中,这些数据从网页或财务报表中读入,并可能包含逗号或美元符号。
语法:
sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)
gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,fixed = FALSE, useBytes = FALSE)
应用:
大致正则表达式的语法和案例就介绍到这里,接下来对正则表达式做一些总结性的工作 (参考《R语言数据操作》这本书):
1、反斜杠\字符用在正则表达式中,表示正则表达式中某些具体特殊含义的字符应该作为普通的字符来对待。在R中,当遇到特殊字符时(\t,\n等)需要输入两个反斜杠。
2、正则表达式由3个部分组成:
a、原意符,它是由一个单一的字符匹配
b、字符类,它可以与许多字符值的任何一个相匹配
c、修正符,对原意符和字符类进行操作
3、由于许多表点符号是正则表达式的修正符,必须始终加一个反斜杠保留其原意:
. ^ $ + ? * ( ) [ ] { } | \
4、要形成一个字符类,使用方括号[]把需要匹配的字符括起来。如需要创建一个由a,b或3组成的字符类,可用[ab3]表示。破折号可用在字符类内部来表示值域[a-z],[A-Z],[0-9]
5、如果在R中输入一个正则表达式,是使用双引号的字符串,就需要双反斜杠,如果使用readline输入表达式,只需要一个反斜杠。
6、R中正则表达式的修正符:
修正符 含义
^ 定位表达式,目标开始
$ 定位表达式,目标结束
. 匹配换行符以外的任何单个字符
| 分割不同的模式
( ) 将相同模式放在一起
* 匹配前面的实体出现0次或更多次
? 匹配前面的实体出现0次或1次
+ 匹配前面的实体出现1次或更多次
{n} 匹配前面的实体精确地出现n次
{n,} 匹配前面的实体至少出现n次
{n.m} 匹配出现次数在n和m次之间
总结:常用的字符串函数
length()
nchar()
cat()
paste()
substring()
strsplit()
grep()
regexpr()
gregexpr()
sub()
gsub()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16