
R贱客之apply族
为什么贱客呢?主要是因为apply函数家族的几个函数经常容易搞混,有时候不知道该用哪个函数才合适呢?现在我就给咱们把apply函数家族细细说来,让这个贱客变成真正的剑客!
apply函数
apply(X, MARGIN, FUN, ...)
#FUN函数运用到x的第MARGIN维度上。MARGIN:1表示矩阵行,2表示矩阵列,c(1,2) 表示矩阵行和列。
操作对象:矩阵或数据框
a<-matrix(1:12,nrow=3)
a
#求每列的平均值
apply(a,2,mean)
结果为: 2 5 8 11
注意:
我们也可以使用colMeans(),rowMeans( ),对矩阵的列和行分别求平均值,rowSums( ),colSums(),,对矩阵的列和行分别求和。如果数据中NA,那么在求行列的平均值或和的时候,NA所在的行列的计算结果也没NA。数据分析培训
lapply()函数
lapply(X, FUN, ...)
#把函数FUN运用到列表的每一个元素
操作 对象: 列表,数据框(不能用于矩阵或数组)
tapply函数
tapply(X, INDEX, FUN=NULL, …, simplify = TRUE)
#FUN函数根据INDEX索引应用到x数据上
操作 对象: 向量(或者具有相同索引的数据集)
sapply()函数
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
#该函数比lapply函数更友好一些,可以使用simplify参数来调节输出的数据格式。
操作 对象:向量
vapply函数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
#类似sapply函数,但返回值只能按照预先指定的方式输出。
操作对象:向量或者表达式对象,其余对象将被通过as.list强制转换为list。
mapply()函数
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
#用于多变量情况。
其中MoreArgs参数:FUN函数的其他参数列表。 SIMPLIFY参数 :逻辑或者字符串,可以减少结果成为一个向量、矩阵或者更高维阵列,详见sapply的simplify参数。 USE.NAMES参数 :逻辑值,如果第一个参数…已被命名,将使用这个字符向量作为名字。
eapply函数
eapply(env, FUN, ...,all.names = FALSE, USE.NAMES = TRUE)
#env表示将要使用进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
env参数:将被使用的环境。
all.names参数:逻辑值,指示是否对所有值使用该函数。
USE.NAMES参数:逻辑值,指示返回的列表结果是否包含命名。
rapply()函数
rapply(object, f, classes ="ANY", deflt = NULL,how = c("unlist", "replace", "list"),...)
#运用函数递归产生列表, classes参数 :关于类名的字符向量,或者为any时则匹配任何类。 deflt参数 :默认结果,如果使用了how = “replace”,则不能使用。 how参数 :字符串匹配三种可能结果。
这里只是大概说一下,详细解释别忘了R里面的help()函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11