
充分挖掘信访大数据的价值
信访大数据的价值在于信访调研、访情预判、绩效考核、管理决策、记录历史。
日前,最高人民法院院长周强会见出席第三届世界互联网大会智慧法院暨网络法治论坛客人时指出,在全球信息化深入发展的大背景下,世界各国法院都在努力推动信息技术在法院工作中的应用。如何与时俱进,摸准时代的脉搏,搭上人工智能的快车,这是智慧型法院建设需要思考的问题。如何借助信访大数据将信访工作引领上快车道,并借助人工智能推动信访工作变革,这是新时期信访工作面临的重大课题。
信访之所以产生,一个重要原因在于,在当事人看来没有感受到公平正义。因此,要实现让每一个当事人都感受到公平正义的司法目标,信访人的每一次信访就成为了有价值的数据。因此,基于这些信访数据的分析就成为了信访工作升级换代的核心要素。在一定程度上讲,抓住了信访大数据,就抓住了新时期信访工作的关键点。建立在信访大数据基础上的人工智能分析,能为信访苗头预判、信访管理决策、调查研究等方面提供精准的个案攻克战术、科学的工作战略,创造出符合司法规律的优质高效型的司法格局。
信访大数据首要价值在于信访调研。传统的信访调研,所依托的样本数据常常不完整、缺乏接谈过程、接谈成效等重要环节,所作事实判断往往缺乏客观性。囿于经历的有限性,研究人员往往通过抽样分析进行调研,这样得出的结论偏差难免。信访大数据要求接访人将每一次来访的信访人的年龄、性别、诉求及理由、工作单位、诉讼史、信访史、案件案由、投诉事项、接谈过程、化解方案、化解效果等等项目完整录入数据库。在完整且客观的信访数据基础上,调研人员能依托人工智能,进行“全样本数据”分析,使得结论最大可能地接近信访规律。
其次,信访大数据的价值在于访情预判。凡事预则立,不预则废。如果我们能从源头上对信访做预判,实现未雨绸缪,将信访消灭在萌芽状态,那么司法工作秩序将能升级到全新的格局。完备的信访大数据库加人工智能,让全样本分析的实现成为可能。在此基础上,信访人信息、信访事由和诉求之间的相关性预知就能更科学。信访数据一旦和案件管理系统产生交互,从立案环节就能对信访苗头作出初步判断,并在后面的审判、执行等程序中步步提醒,最大程度实现信访预判和提醒,最终实现谋略先于未动,转变以往的事后补救为事前预警防范。
第三,信访大数据的价值在于绩效考核。在各个司法岗位上,客观公平合理的绩效考核机制对激发干警的主观能动性不可或缺。用案件量、结案量等数字来考核审判法官显得粗糙。科学的激励机制除了考虑数量外,还需考虑质量。衡量质量好坏的其中一个标准就是当事人是否在司法过程中感受到了公平正义。信访部门作为司法服务的“售后”或者投诉部门,是未感知到公平正义的当事人的集散地,更是抱怨和意见的“回收站”。建立信访大数据库,将当事人每一次来访都完整记录入库后,我们可以测算出当事人对各具体到某位司法工作人员或业务部门的不满意度,以在司法服务质量上为绩效考核贡献依据。另外,以前对接访员的考核停留在接访数量上,而有了大数据库后,接访的时间长短、接访的成效也加入到了考核因素中来,能较为全面地从数量和质量上对接访人员进行考核。
第四,信访大数据的价值还在于管理决策。传统的管理主要依托经验积累和对事实的调研,以求得科学管理、精准决策。由于收集的信访信息缺乏完整性和客观性,以及分析技术匮乏,传统信访管理中经验就占据了重要位置。但很多经验的传承存在着不全面、不准确的问题,这就使得信访管理一直停留在粗糙阶段。信访数据库的建设以信访信息客观、详实、完备为目标,以量的积累突破经验的局限性,最终为科学的调研和精准的预判提供了坚实的判断基础。这样,信访管理决策层不论是在信访个案中寻找攻克战术、还是在整体信访管理工作中制定科学的工作战略,都能实现管理决策科学化、精准化,为立案、审判和执行工作全方位服务,最终创造出符合司法规律的优质高效型司法格局。
最后,信访大数据的价值还在于记录历史。今天就是明天的历史,站在未来的角度来看,现在信访人的每一次信访都是历史。以法制史明鉴,能启迪未来的法律人审慎思考我们的民族究竟适合一个什么样的司法,启发未来学者探究符合国情的司法路径和方向。信访史是法制史中最原生态的一环,它最真实地反映了司法现状,将法律全球化中法律移植带来的不良反应、司法过程中反映出的制度漏洞和法律局限性暴露无遗。但遗憾的是,信访档案在传统的信访工作中是残缺的。信访大数据库的价值就在于,将信访人每一次来访都全方位记录在案,包括接访过程中图片、视频和音频资料都入库。这些资料在将来都是法制史资料,它为未来法律人对法律秩序的探索、司法公正内涵的准确诠释、法律制度的完善都大有裨益。
时下,“人工智能”和“大数据”等新概念层出不穷,这已经预示着我们已经进入一个高速发展的全新时代。从认识论上接受这些新概念、新事物,并吸收科技智能时代带来的福利,掌握并熟练操作新的工具,这将使我们的司法服务实现跨越式发展。在智慧法院建设的大潮中,以信访大数据和人工智能为依托的信访工作模式应该成为每一个司法机关的标配。增配和培养技术人才,开发和完善数据库储存软件,积累并充分挖掘信访大数据资源背后的潜在价值,研究和运用数据分析成果为信访调研、预判和管理决策提供依据……如此,将能最大程度地满足人民日益升级的优质高效司法需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15