京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下,需要什么样的冷存储
智能互联网时代,数据正在以几何级的数量爆炸增长,如何存储并管理这些海量数据,是很多企业面临的一个难题。如果采用传统通用型服务器存储策略,这意味着要建设庞大的数据中心系统,导致存储成本极速攀升。
对于那些云服务提供商而言,大量不断增长的数据例如图片等都属于不经常访问,但却又无法删除的,即使客户很久不会访问这些信息,但依然不能随意删除,并且不允许停机归档,也无法实现洪峰数据控制。对于这些不常访问的“冷”数据,如果我们能把他们迁移到一个专为冷数据而设计的低成本存储层中,将能大幅降低费用。
哪些数据需要冷存储?
冷存储主要用于那些备份、灾难恢复、存档、社交媒体等应用领域。这些数据都有一个共通的特性,较低的访问频率,并且需要最大限度的降低其存储成本,同时要求随时可访问。例如用户在社交媒体上存储的大量图片信息,以及法律电子取证要求已存档的数据必须在特定的时间范围内可用。因此,这就要求云服务提供商以及企业必须确保数据的完整性,以及及时的访问权限。
备份对于企业而言至关重要,因为需要备份的数据通常是企业有效运营所需要的信息,如果这些信息无法在特定时间范围回复,将严重影响企业业务。
存档对于企业运营以及提高工作效率必不可少,通常,企业并不需要快速访问已经存档的数据。但检索已经存档的数据可能要花费大量的时间,并且随着企业业务的增长,数据量持续增加,同时这些数据要存储长达几十年甚至更长的时间,这会给存储带来极大的压力。
灾难恢复,热备用暂难恢复服务在云中提供了专业的备用基础设施和数据,这意味着在发生灾难时,可以立即切换到云中。通过冷存储服务,可以消除企业在灾难中数据保护的某些流程,降低成本和复杂性。同时,企业需要快速的重构数据文件,还原应用程序,以最快的速度恢复系统正常运行。
社交媒体,智能互联网时代,大量的社交数据产生,用户通常查看新发布的照片,而对于那些旧的数据,则鲜有人问之。对于照片、视频等这些非结构化数据通常会占用大量存储空间,并且增长速度远远超过其他类型的数据。如果将这些旧的数据迁移到冷存储中,可以大幅降低运营成本。同时提供社交媒体服务的企业必须保护这些数据的隐私安全。
我们需要什么样的冷存储?
对于大部分创业公司而言,通常在公司创立初期,很难将业务细分的非常明确,大部分都会选用通用服务器来做存储,但随着业务的不断扩张,就会考虑将很多计算型节点分离出来。对于那些重要的数据希望在运行的更快的SSD 或PCIE SSD上,而对那些历史数据、日志则希望不要太占用现有服务器存储资源。因此,业务需要进行分层。
如何进行分层?在要确保性能不能有大幅损失的同时降低存储费用,特别是对于那些图片存储,对于一些云服务提供商而言,这一点尤其重要。因为根据其业务类型,就要求及时客户很久没有访问这些数据,也不能随意删除。另外一点非常重要的则是,其业务没有明显的周期性,不像其他行业,如金融等,每天固定时间开市闭市,可以进行数据维护;也没有周期性的数据洪峰,无法做出数据洪峰控制。
如何满足上述需求?联想的冷存储产品不失为一个理想的选择。
联想4U60盘位、双节点的冷存储业务服务器SD600,每节点拥有2个2.5寸系统盘插槽,可以通过更换连接两节点间EXPB槽位的DB卡,实现服务器在HA (High Availability)、Zoning以及 Single Node (JBOD)三种模式下的工作方式。
通过采用联想SD600可以顺利的帮助企业将计算分析业务与数据存储业务分离,当存储服务器的硬件资源主要用于数据存储,数据块为大块数据时,相信SD600将是您最优的选择。因为对并发进程较少的业务来说,每个进程的性能更依赖于CPU的主频。不难看出,存储业务对cores间的进程切换需求很低,对单core的主频性能要求较高。那么经过优化过的Avago磁盘主控芯片,与高频E3 CPU的搭配,将会更好的为您提供数据存储业务。
可灵活选配的联想冷存储
联想SD600在HA 模式下,当对数据的实时可用能力有较高要求时,可以通过增加一张HA DB card来实现两个节点间的高可用。同时,因为需要用到SAS接口的双通道,需要存储池内的60块盘都是SAS磁盘。当需要降低归档服务器、文件服务器、图片服务器等温冷数据服务器的成本时,可以选用Zoning和Single Node模式。Zoning模式即划分给每个节点30块磁盘做存储池,将SD600变为4U2N服务器使用。Single Node模式可以有效降低互联网公司的图片存储、日志归档、音视频存储业务的硬件建设成本。此外,该模式下一个节点将带起60块SATA硬盘。目前联想推广的最佳实践案例包含6T 7.2k 企业级硬盘/8T 5.9k 企业级云盘。
此外,联想SD600在可靠性和兼容性方面实现了最佳平衡,可以满足RHEL、SUSE、windows、Ubuntu各种业务需求。其采用双排9风扇交叉风向设计,具备了更好的散热效果,满足服务器45℃高温下连续工作的要求,更适合苛刻的数据中心环境。与E5通用服务器相比,联想SD600的TCO至少降低了10%,耗电量降低了8%。同时,仅从数据的存取角度来看,1颗高主频能超线程到8 Thread的E3-1231 v3在相同内存与网络环境的情况下,在客户实际的使用中发现,相比2颗E5-2609 v3数据传输速度会提高10-20%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27