京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从洞察到决策,移动电商大数据的四种能力
“对电商以及互联网企业来说,大数据到底意味着什么?是一种技术、一批数据,还是一堆算法?”这是在日前召开的移动开发者大会(MDCC 2016)主论坛上,京东集团技术副总裁赵一鸿抛出的一个问题。在如今这种言必谈大数据,每个企业都以数据驱动自居的时代,这个问题正隐隐出现在一些大数据从业者的脑中。
那么,数据的本质,到底是什么?在赵一鸿看来,大数据的价值是提供一种能力,它可以把握人的变化、预知趋势的走向、提高决策的质量。而这种能力恰恰是凌驾在数据、技术、算法之上的。“特别是在移动互联网时代,移动技术的普遍性给用户带来不一样的变化,也让我们对大数据的动态性、准确性、完整性都提出更高的要求。这也是京东大数据的优势所在。”赵一鸿如是说。
专注用户行为
易观发布的《中国移动网购市场季度监测报告2016年第2季度》数据显示,从2015年第二季度开始,是中国网络购物的分水岭,移动网购开始追赶PC端,并在第三季度完成了对PC端购物占比的超越。2016年第二季度,中国移动网购市场交易规模达8771.4亿元,同比增长104.5%,移动网购已经占整个网购规模的72.3%;预计2017年有望突破80%。
“这个数字背后是对所有电商企业的挑战:随着移动端使用率的增加,用户在屏幕上的关注点会减少,代表着我们能提供给用户的信息越来越少,希望在这些内容中命中用户的需求难度不断提升。”赵一鸿认为,随着移动时代流量的引入越来越宝贵,迫切要求从技术角度实现精准和个性化体验。
京东一直通过大数据在追踪并研究着用户。数据显示,相比PC端,移动电商用户的碎片化利用率高,下单间隔更短。”在碎片化的场景下,用户购物的效率是非常高的,在一天中,无论是订单量还是购买产品的客单价都高于PC端。“赵一鸿解释道,因此,只有更精准地呈现内容,才会让商家和用户实现双赢,前者提升转化率和用户体验,后者缩短购物时间、买到更合适的商品。
图注:京东用户在PC端和移动端订单量分时段占比分布(蓝色为移动端)
此外,移动技术的普适性,也给很多西部地区的用户带来变化,这些电商新用户跨越了PC时代直接进入移动电商。京东大数据显示,西藏、宁夏、新疆、陕西、贵州、山西等省份的移动端渗透率超过了北上广深等一线城市,未来移动电商也将在西部释放更多潜力。
大数据的四种能力
那么,面对消费者的升级,京东如何理解这样的变化,并利用大数据来使这些变化产生价值?赵一鸿认为,大数据为京东带来了4种能力。第一种能力是洞察,数据中包容着丰富的趋势和变化,我们需要具备发现规律的能力;第二种能力是挖掘,通过算法和机器学习来深入分析和学习趋势、洞察、变化的原因;第三种能力是决策,将数据智能赋值给客户和供应商,为其创造价值;第四种能力是开放,分享洞察、商机给第三方,包括社会和政府。
从京东大数据平台建设的第一天起,对用户在网上行为和数据的收集就是整个京东大数据团队工作的重点。在赵一鸿看来,京东大数据有三大特点:非常完整、非常精准、价值链非常长。因为这些数据覆盖了用户从浏览、下单、配送到客服的完整过程,是用户在用真金白银购物过程中产生的数据,因此非常准确,具有极高的质量,从而能产生巨大的价值。
为了更好地研究用户,京东的用户画像按照地域、行为、设备、偏好、用户等属性,将虚化的目标用户数据化和具象化。“与目前业内很多公司‘静态’的用户画像不同,京东的用户画像是‘动态’的,每个用户身上不会固定一个或几个标签,而是随着用户生活的变化而变化,陪伴用户,预知用户需求,来进行推荐和个性化服务。“赵一鸿表示,基于用户画像,结合京东的智能卖场、移动商店等项目,精准触达用户。例如,在iPhone 7首发中,京东根据购买量预测,将商品提前放在配送站,让众多用户在1小时内拿到了iPhone 7/Plus手机,其中一位北京用户从下单到收货仅用了3分57秒。
京东大数据的重点是解决实际的业务问题,为用户和商家创造价值,因此,开放的意义显得更为重大。赵一鸿表示,移动电商的趋势已经不可逆转,未来京东将利用移动互联网的场景化和去中心化趋势,将京东各个业务模块及能力进行整合与开放,为合作伙伴创造价值。同时,京东会将高质量数据通过各种形式开放出来,定期发布各个维度的京东指数,更好地服务于社会各界和协助政府决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15