
大数据与隐私安全
我们对于日常生活中的各种“推荐”早已是习以为常。比如每天打开电子邮箱时,难免会收到各种商品推荐的邮件。我过去在网上买书比较多,邮件中当然是以某购书网发来的新书推荐居多。再比如每次登录YouTube,总会在网站的主页看到系统推荐给我的一系列视频片段。不论推荐的是图书还是视频,大概都能和我最近喜欢看的内容合拍。但是,每一次享受这种方便的同时,我也会感到一种隐约的不安:在这些推荐的背后,是谁在做出决定呢?
用一个流行的词汇来概括,替我做出决定的应该并不是某个人或一群人,而是所谓的“大数据”(BigData)概念。每一次的上网购物,哪怕是对网上内容的浏览,都在不知不觉中形成了一种属于我独有的数据。这些数据记录着我的行为习惯、个人爱好以及种种涉及隐私的讯息,如今却都被互联网公司巨细无遗地捕捉、收集进入他们的云端数据库,作为向我推送商品的参考依据。说实话,这些精准的推荐收到得越多,我心里的不安感反而越有所增加。原因在于,我发现这些推荐的准确度越来越高,这意味着我个人的数据泄露越多,仿佛内心已经逐渐被“大数据”看穿,连我想些什么都有被精准预测的可能。
看似无所不能的大数据引起了不少人的警觉,例如国际网络安全专家施奈尔(BruceSchneier)。他在《隐形帝国》一书里写道:“脸书(facebook)只是根据按赞的动作,就可以推测一个人的种族、个性、政治意识形态、感情状态和药物使用情形……行销人员不断地在寻找一些能代表某人即将花大钱的模式。”需要特别指出的是,这些能够让顾客更愿意掏钱买东西的行为数据,其实也不是什么新东西,过去早已有之,只不过,其用途却并不在于商业。
早在二战期间,数据分析便是同盟国胜利的关键因素之一。同盟国数据分析活动著名的案例,就包括破译Enigma密码避免德军潜艇攻击、使用喷火式战斗机拍摄的2D军事照片重构3D图像等等。而二战结束后,原本是军用的数据采集和分析方法开始被大规模使用在平民百姓身上。在麦卡锡时代,美国政府曾经利用政党登记、杂志订阅,以及朋友、邻居、家人和同事的证词来收集一个人的资料。施奈尔认为,和今天的差别在于,现在的监控能力比以前更强,个人数据收集更精确完整,而科技已经进化到了可以利用电脑做复杂分析的程度。也就是说,复杂数据分析可直接给出一个准确度很高的结论:关于一个人的信用度、收入、习惯、生活状况等等。这些分析对商业机构来说当然是极有价值的。
大数据的完备和海量反过来恰好说明了我们这个社会对人的监控和操纵已经到了何其深的程度。以至于我们在做每一个行动之前最好都三思而行,以免给自己带来麻烦,反为“大数据”所伤。事实上,有不少外国的数据公司已经开始用数据软件分析人们在脸书(facebook)等社交网络媒体的行为习惯,来判断此人的信用评价、判断此人的信用风险,个人行为成为网上征信的重要手段。而中国国内亦开始有公司在对用户在本土社交网站点赞等等的行为进行分类统计,用以预测用户偏好。因此,即使是发一个朋友圈状态以及在别人的朋友圈里点赞时,也要意识到这些行为其实也会被记录到个人的数据库里。但人们往往会忽略这一显而易见的事实。
在我们注册使用的各种社交网站、邮箱、门户、商业网站等等的时候,我们其实都过于轻易地同意把自己个人行为的记录和数据提供给了商业机构。这些商业机构在“合法”获取了个人数据之后,又会将数据卖给其他的商业网站或者政府机构。据新闻报道,美国的一个汽车网站在获得用户行车的详细记录之后开始动起了数据的脑筋,他们决定将数据卖给政府交通部门,因为数据详细记录了用户在不同时段和路段的车速和车况,对之进行分析,显然有利于交通部门更准确地预测车主在哪些地段容易超速,方便交通警察开罚单。
随着“大数据”的迅速发展,类似的个人信息数据被越来越多的监控、统计、分析,并且被商业机构和政府买卖分享。了解到一个人开车的车速详细数据已经并不奇怪,在现实中,更有海量的个人隐私数据在被暗中监控统计,而这些涉及个人方方面面隐私的数据都没有得到人们事实上的允许,因此也是不合法并且不合理的。这也就是我为什么一直对于“大数据”这个看似时髦的词汇始终持保留意见的原因。
谁来监控监控者?这是一个没有人能回答的问题。现在,人人似乎都是“大数据”的受益者,而其带来的问题却尚未充分展现出来。但我们一定不能忘记大数据的观测、产生、统计、使用,事实上都对于个人的自由和隐私构成了一种侵害。施奈尔向我们描绘了一个颇为可怕的未来场景:“对我们有些了解的人,能对我们有某种程度的控制。知道我们所有事情的人,能对我们进行完全的控制。监控有助于控制。”显然,商业机构和权力部门要想实现这种“数据控制”,前提就是要通过各类机构来监测、收集人们海量的日常数据。如此看来,大数据的背后,意味着未来人类自由和隐私权新的威胁,我们当引起足够的警觉并以切实的行动防患于未然。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10