京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与隐私安全
我们对于日常生活中的各种“推荐”早已是习以为常。比如每天打开电子邮箱时,难免会收到各种商品推荐的邮件。我过去在网上买书比较多,邮件中当然是以某购书网发来的新书推荐居多。再比如每次登录YouTube,总会在网站的主页看到系统推荐给我的一系列视频片段。不论推荐的是图书还是视频,大概都能和我最近喜欢看的内容合拍。但是,每一次享受这种方便的同时,我也会感到一种隐约的不安:在这些推荐的背后,是谁在做出决定呢?
用一个流行的词汇来概括,替我做出决定的应该并不是某个人或一群人,而是所谓的“大数据”(BigData)概念。每一次的上网购物,哪怕是对网上内容的浏览,都在不知不觉中形成了一种属于我独有的数据。这些数据记录着我的行为习惯、个人爱好以及种种涉及隐私的讯息,如今却都被互联网公司巨细无遗地捕捉、收集进入他们的云端数据库,作为向我推送商品的参考依据。说实话,这些精准的推荐收到得越多,我心里的不安感反而越有所增加。原因在于,我发现这些推荐的准确度越来越高,这意味着我个人的数据泄露越多,仿佛内心已经逐渐被“大数据”看穿,连我想些什么都有被精准预测的可能。
看似无所不能的大数据引起了不少人的警觉,例如国际网络安全专家施奈尔(BruceSchneier)。他在《隐形帝国》一书里写道:“脸书(facebook)只是根据按赞的动作,就可以推测一个人的种族、个性、政治意识形态、感情状态和药物使用情形……行销人员不断地在寻找一些能代表某人即将花大钱的模式。”需要特别指出的是,这些能够让顾客更愿意掏钱买东西的行为数据,其实也不是什么新东西,过去早已有之,只不过,其用途却并不在于商业。
早在二战期间,数据分析便是同盟国胜利的关键因素之一。同盟国数据分析活动著名的案例,就包括破译Enigma密码避免德军潜艇攻击、使用喷火式战斗机拍摄的2D军事照片重构3D图像等等。而二战结束后,原本是军用的数据采集和分析方法开始被大规模使用在平民百姓身上。在麦卡锡时代,美国政府曾经利用政党登记、杂志订阅,以及朋友、邻居、家人和同事的证词来收集一个人的资料。施奈尔认为,和今天的差别在于,现在的监控能力比以前更强,个人数据收集更精确完整,而科技已经进化到了可以利用电脑做复杂分析的程度。也就是说,复杂数据分析可直接给出一个准确度很高的结论:关于一个人的信用度、收入、习惯、生活状况等等。这些分析对商业机构来说当然是极有价值的。
大数据的完备和海量反过来恰好说明了我们这个社会对人的监控和操纵已经到了何其深的程度。以至于我们在做每一个行动之前最好都三思而行,以免给自己带来麻烦,反为“大数据”所伤。事实上,有不少外国的数据公司已经开始用数据软件分析人们在脸书(facebook)等社交网络媒体的行为习惯,来判断此人的信用评价、判断此人的信用风险,个人行为成为网上征信的重要手段。而中国国内亦开始有公司在对用户在本土社交网站点赞等等的行为进行分类统计,用以预测用户偏好。因此,即使是发一个朋友圈状态以及在别人的朋友圈里点赞时,也要意识到这些行为其实也会被记录到个人的数据库里。但人们往往会忽略这一显而易见的事实。
在我们注册使用的各种社交网站、邮箱、门户、商业网站等等的时候,我们其实都过于轻易地同意把自己个人行为的记录和数据提供给了商业机构。这些商业机构在“合法”获取了个人数据之后,又会将数据卖给其他的商业网站或者政府机构。据新闻报道,美国的一个汽车网站在获得用户行车的详细记录之后开始动起了数据的脑筋,他们决定将数据卖给政府交通部门,因为数据详细记录了用户在不同时段和路段的车速和车况,对之进行分析,显然有利于交通部门更准确地预测车主在哪些地段容易超速,方便交通警察开罚单。
随着“大数据”的迅速发展,类似的个人信息数据被越来越多的监控、统计、分析,并且被商业机构和政府买卖分享。了解到一个人开车的车速详细数据已经并不奇怪,在现实中,更有海量的个人隐私数据在被暗中监控统计,而这些涉及个人方方面面隐私的数据都没有得到人们事实上的允许,因此也是不合法并且不合理的。这也就是我为什么一直对于“大数据”这个看似时髦的词汇始终持保留意见的原因。
谁来监控监控者?这是一个没有人能回答的问题。现在,人人似乎都是“大数据”的受益者,而其带来的问题却尚未充分展现出来。但我们一定不能忘记大数据的观测、产生、统计、使用,事实上都对于个人的自由和隐私构成了一种侵害。施奈尔向我们描绘了一个颇为可怕的未来场景:“对我们有些了解的人,能对我们有某种程度的控制。知道我们所有事情的人,能对我们进行完全的控制。监控有助于控制。”显然,商业机构和权力部门要想实现这种“数据控制”,前提就是要通过各类机构来监测、收集人们海量的日常数据。如此看来,大数据的背后,意味着未来人类自由和隐私权新的威胁,我们当引起足够的警觉并以切实的行动防患于未然。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23