京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据,未来已来
日前,在成都的一次大数据会上,各位顶级专家都不约而同地提到了大数据还远未成熟的观点。我也很赞同这个观点,大数据在今天,依然属于前沿科学,它在很多行业和细分领域,都还很不成熟。然而,这并不代表我们还要再徘徊等待,无所作为。相反,在一些细分领域,在一些特定的“点”,我已经看到了星星之火。与我所经历过的其他新兴市场并无不同。我坚信,这些星星之火必将燎原!大数据,未来已来。
大数据拐点已现
在过去的时间里,我们听到越来越多的公司,在越来越多的行业里,用着他们的内外部数据,用他们的大数据处理技术,帮助用户解决了他们的问题。
判断大数据市场是否进入拐点,以我过往的经验,有三个重要的特征来评价:
在特定的领域,针对特定的人群,数据积累已经可以满足特定应用的基本要求;
在特定的领域,针对特定的人群,大数据的处理技术已经可以很好地满足特定应用的需求;
第一、二点不难理解,一个新市场的成熟总是先从一些“点”,再及“线”,最后才成“面”,乃至从局部发展成全面的成熟。大数据,目前还处于“点”的阶段。所以,目前还无法考虑“面”的问题,只能具体问题具体分析,下面的方法论里会提到这一点。我可以很确切地告诉大家,我们不但找到了一些“点”,而且正在为他们用数据以及我们的数据处理技术提供有价值的服务,帮他们解决了很棘手的问题,创造了价值!
这里面值得一提的是第三点。相信很多大数据的从业者都是互联网背景的人,我不是单纯的互联网人。相反,在过去的十数年里,我一直从事电信和金融行业的服务。一个市场的兴起和发展,行业的推动力是不可忽视的。大数据,恰好在国家“互联网+“的战略背景下发展起来的。它的应用场景远不仅是互联网!我们看到,大数据已经渗透到很多行业中去,并正在为各行各业解决一些实际的问题。虽然,目前还有一些这样那样的不足,也有很多冠以大数据,其实并非大数据的项目在展开,但毕竟现在正在举国家之力在推进大数据产业,其中必然有真正的大数据项目和大数据公司受益,这对大数据整个产业的发展和市场的早日成熟都是非常有利的。
所以,有一种大胆的猜测,由于国家的介入,势必会大大缩短大数据产业、大数据市场的成熟的时间。不要把目光只停留在互联网,大数据改变的可远远不止互联网应用!
你准备好了吗?
我经常问自己,如果大数据浪潮来了,应该做好哪些准备?如果你不想错过这次浪潮,是时候该思考这个问题了。
首先要做的,就是对自己有一个定位,你在将要成熟的产业链里扮演一个什么角色?对大数据公司的划分方法有很多,比较常见的是按照提供技术的细分来划分的。我个人比较喜欢用产业链的角色来划分。在2016年1月1日的《大数据跑马圈地的时代已过,逐渐清晰的产业格局将上演厮杀》一文中阐述过四种角色的划分,即数据交换商,数据优化商,算法提供商以及解决方案提供商。这四种角色的定义到目前为止我依然认为是合理的。具体的定义可参照原文,这里就不做更多解释了。
有了一个定位,清楚了自己将在未来产业格局中扮演的角色,接下来就是选择市场了。传统行业市场和互联网的消费市场,是完全不同的两个市场。我个人目前选择的是前者,但我从来不认为后者不好,只是个人经历的原因,我对前者更有把控力,后者的想象空间可能会比前者大。
对于行业市场,也有两种,一种是改变原有的行业,一种是解决一些新兴行业的新问题。前者可能会慢一些,因为背负的东西太多,可从另一个角度来看,一旦实现改变,未来的红利还是相当可观的;后者可以说是可遇不可求,一旦遇上,因为本身需要快速地发展,背负的东西很少,所以可能会比较快地切入市场,并伴随这个新兴市场一期成长。这两种情况目前我们都遇到了,都在做。
一个新的市场,不要期望一天就成熟起来。一个市场的早期,一定会有一些“点”先成熟起来,那么我们就针对这些点,依靠对数据的理解,对大数据技术的掌握,为其提供服务,解决他们遇到的问题。切不可求大求全,因为数据的成熟度还远未达到,整个行业的体系建设还远未成熟。我们能做的,绝不是等待徘徊,而是积极地寻找这些“点”,并倾注全力去解决问题,等待“线”乃至后续的成熟。我们需要不断地积累经验,这样才能在一旦市场成熟时,我们已经积累了足够的经验和资源去跟大厂商抗衡,才能在未来成熟的产业格局中占有一席之地。否则,等待一切都水落石出时,哪里还能有你的立足之地呢?
大数据落地的方法论
很多公司喜欢一步到位,做产品也如此。一上来就高屋建瓴,面面俱到。我不能否认这种做法的科学性,在成熟行业里,这是正确的。但是在新兴行业里,这是可能就是致命的。
在一个新兴行业里,人们对市场的理解就如盲人摸象。有的说是柱子,有的说是鼻子,有的说是一堵墙,其实都不是。看过“雕爷”的一本书,很赞同他的一个观点,互联网的项目,经常是看的是A,落地的是B,在C上赚了钱,在D上发了家。其实,并不是只有互联网项目如此,所有的早期市场都如此,具有很多的假象和欺骗性。
2012年正是移动互联网火热的时候,百花齐放百家争鸣。但从数据的角度来看,各家都面临着极大的不确定性(数据稀疏而且规律性差,存在很多“噪声“)。因为用户的使用习惯尚未养成。除了阅读、听音乐等少量的用户已经养成的使用习惯,多数应用还属于探索阶段。尤其对于O2O而言,单位面积的使用人数的匮乏(密度不够),直接导致了应用的可用性。在这种环境下,人们对市场理解是片面的,不稳定的,错误的概率极高。
所以,对新市场而言,不要静态地去看待问题,而要高度动态地密切关注着一些“表象”的演变。这就带来了做新市场新业务的方法论,小投入,小周期,小产品的快速迭代。
新市场不需要大兵团作战,兵力再多也展不开,因为具有太多的不确定性。我以往的成功经验,是利用精干的小分队,在众多不确定性中找到确定性,先做下去。做新市场,如同对弈。出招,市场反馈,再调整,再出招,不断地在动态中调整自己的方向,直到最后的成功。这绝不是一个静态的过程,要在动态中捕捉到真正的机会。不断地利用已知的知识和反馈,已确定的信息,去推断其他未知的不确定性,逐一落地。我常把做新市场新业务的过程比作一个古老的PC游戏—挖地雷。我们就是用已知的,确定的因素,去推断未知的,不确定的因素,直至将所有的地雷挖干净,取得胜利。
做新市场新业务,初期的步子不要迈得太大。本着谨慎的心态,小步快走,以高度的敏感和深入的洞察力去贴近市场,摸到市场的脉搏,与市场共舞。
大数据,没有旁观者。因为我们每个人每天都会产生着越来越多的数据。大数据的脚步已经离大家越来越近,大数据,未来已来,我已经准备好了,你呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11