京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:ggplot2精细化绘图—以实用商业化图表绘图为例
本文旨在介绍R语言中ggplot2包的一些精细化操作,主要适用于对R画图有一定了解,需要更精细化作图的人,尤其是那些刚从excel转ggplot2的各位,有比较频繁的作图需求的人。不讨论那些样式非常酷炫的图表,以实用的商业化图表为主。包括以下结构:
1、画图前的准备:自定义ggplot2格式刷
2、画图前的准备:数据塑形利器dplyr / tidyr介绍
3、常用的商业用图:
1)简单柱形图+文本(单一变量)
2)分面柱形图(facet_wrap/facet_grid)
3)簇型柱形图(position=”dodge”)
4)堆积柱形图(需要先添加百分比,再对百分比的变量做柱形图)
5)饼图、极坐标图
6)多重线性图
这篇文章其实是我之前那篇博文的一个延续。因为接了一个活要用R定制化数据报表,其中涉及大量的对图表精雕细琢的工作。在深入研究ggplot2时,深深感觉到用ggplot2画图与用excel画图的不一样。
如果要用ggplot2画图,还是需要了解很多技术细节的。这些细节要么散落在R可视化技术和ggplot2:数据分析与图表技术这两本书里,要么散落在网上。因此在这里以我学习和总结的过程,对ggplot2的精细化画图做一个阐述,介绍我整理后的作图理念。
如果有进一步学习需要的各位,请直接买书或者自己实践学习。很多技术细节需要自己摸索才知道的,祝大家好运。
在画图前,我们首先定义一下ggplot2格式刷。
首先,ggplot2本身自带了很漂亮的主题格式,如theme_gray和theme_bw。但是在工作用图上,很多公司对图表格式配色字体等均有明文的规定。像我们公司,对主色、辅色、字体等都有严格的规定。如刘万祥老师早期的一篇配色博文里,大家更是可以看到,很多商业杂志的图表,配色风格都是非常相近的。因此,修改主题,使其更加适合我们的商业需求,保持图表风格统一,是非常必要的。
虽然ggplot2可以通过代码的追加,细细修改表距、背景色以及字体等框架。但是如果每做一个图,都要如此细调,代码将会非常繁琐,而且万一老板突然兴起要换风格时,代码修改将会非常痛苦。
幸运的是,ggplot2允许我们事先定制好图表样式,我们可以生成如mytheme或者myline这样的有明确配色主题的对象,到时候就像excel的定制保存图表模板或者格式刷,直接在生成的图表里引用格式刷型的主题配色,就可以快捷方便的更改图表内容,保持风格的统一了。
在运行之前,首先加载相关包
library(ggplot2)
library(dplyr)
library(ColorBrewer)
library(tidyr)
library(grid)
#载入格式刷
######
#定义好字体
windowsFonts(CA=windowsFont("Calibri"))
接下来是一个示范。我首先共享了我常用的一个主题刷,配色参考以下:
主体色:蓝色 085A9C ,红色 EF0808,灰色 526373
辅助色:浅黄色 FFFFE7,橙色 FF9418, 绿色 219431, 明黄色 FF9418,紫色 9C52AD
定制了mytheme, myline_blue, mycolour等多个对象:
1
#定义好字体
2 windowsFonts(CA=windowsFont("Calibri"))
3 #事先定制好要加图形的形状、颜色、主题等
4 #定制主题,要求背景全白,没有边框。然后所有的字体都是某某颜色
5 #定制主题,要求背景全白,没有边框。然后所有的字体都是某某颜色
6 mytheme<-theme_bw()+theme(legend.position="top",
7 panel.border=element_blank(),
8 panel.grid.major=element_line(linetype="dashed"),
9 panel.grid.minor=element_blank(),
10 plot.title=element_text(size=15,
11 colour="#003087",
12 family="CA"),
13 legend.text=element_text(size=9,colour="#003087",
14 family="CA"),
15 legend.key=element_blank(),
16 axis.text=element_text(size=10,colour="#003087",
17 family="CA"),
18 strip.text=element_text(size=12,colour="#EF0808",
19 family="CA"),
20 strip.background=element_blank()
21
22 )
23 pie_theme=mytheme+theme(axis.text=element_blank(),
24 axis.ticks=element_blank(),
25 axis.title=element_blank(),
26 panel.grid.major=element_blank())
27 #定制线的大小
28 myline_blue<-geom_line(colour="#085A9C",size=2)
29 myline_red<-geom_line(colour="#EF0808",size=2)
30 myarea=geom_area(colour=NA,fill="#003087",alpha=.2)
31 mypoint=geom_point(size=3,shape=21,colour="#003087",fill="white")
32 mybar=geom_bar(fill="#0C8DC4",stat="identity")
33 #然后是配色,考虑到样本的多样性,可以事先设定颜色,如3种颜色或7种颜色的组合
34 mycolour_3<-scale_fill_manual(values=c("#085A9C","#EF0808","#526373"))
35 mycolour_7<-scale_fill_manual(values=c("#085A9C","#EF0808","#526373",
36 "#FFFFE7","#FF9418","#219431","#9C52AD"))
37 mycolour_line_7<-scale_color_manual(values=c("#085A9C","#EF0808","#526373",
38 "#0C8DC4","#FF9418","#219431","#9C52AD"))
把以上代码在R里面运行以后,就可以直接使用了。譬如以下:
1)先生成一个简单的图表:
简单地指定x轴为离散型变量species,y为求和,会得到下面的柱形图
这时候,套用一下之前设置好的主题(mytheme),背景、坐标轴还有字体颜色就相应改变了。
然后,因为之前格式刷部分我设定了一个蓝色的柱形图样式(mybar),这里直接引用的话,就可以直接生成蓝色的柱形图了。
有了事先设定的一些格式刷以后,我们就可以快速有效地作图了。
但是在作图之前,就像excel作图总要先把数据用处理成想要的形式 。在excel里面,我们常用的是数据透视表或者一些公式辅助,而在R里,则是用一些常用的包,如dplyr及tidyr,对数据进行重塑再造
在我之前看的那两本ggplot2的书里,基本用的都是reshape2+plyr的组合。但实际上hadley后续出的dplyr与tidyr更加有用。具体的使用方法,在JHU Getting and cleaning data有介绍,老师还编了一个swirl课程供人使用,安装方法如下。
其他的也可以参考我这篇博文
总之,用好dplyr的话,你可以快速的把一些数据,如下面的股票逐笔成交记录
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27