京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言:ggplot2精细化绘图—以实用商业化图表绘图为例
本文旨在介绍R语言中ggplot2包的一些精细化操作,主要适用于对R画图有一定了解,需要更精细化作图的人,尤其是那些刚从excel转ggplot2的各位,有比较频繁的作图需求的人。不讨论那些样式非常酷炫的图表,以实用的商业化图表为主。包括以下结构:
1、画图前的准备:自定义ggplot2格式刷
2、画图前的准备:数据塑形利器dplyr / tidyr介绍
3、常用的商业用图:
1)简单柱形图+文本(单一变量)
2)分面柱形图(facet_wrap/facet_grid)
3)簇型柱形图(position=”dodge”)
4)堆积柱形图(需要先添加百分比,再对百分比的变量做柱形图)
5)饼图、极坐标图
6)多重线性图
这篇文章其实是我之前那篇博文的一个延续。因为接了一个活要用R定制化数据报表,其中涉及大量的对图表精雕细琢的工作。在深入研究ggplot2时,深深感觉到用ggplot2画图与用excel画图的不一样。
如果要用ggplot2画图,还是需要了解很多技术细节的。这些细节要么散落在R可视化技术和ggplot2:数据分析与图表技术这两本书里,要么散落在网上。因此在这里以我学习和总结的过程,对ggplot2的精细化画图做一个阐述,介绍我整理后的作图理念。
如果有进一步学习需要的各位,请直接买书或者自己实践学习。很多技术细节需要自己摸索才知道的,祝大家好运。
在画图前,我们首先定义一下ggplot2格式刷。
首先,ggplot2本身自带了很漂亮的主题格式,如theme_gray和theme_bw。但是在工作用图上,很多公司对图表格式配色字体等均有明文的规定。像我们公司,对主色、辅色、字体等都有严格的规定。如刘万祥老师早期的一篇配色博文里,大家更是可以看到,很多商业杂志的图表,配色风格都是非常相近的。因此,修改主题,使其更加适合我们的商业需求,保持图表风格统一,是非常必要的。
虽然ggplot2可以通过代码的追加,细细修改表距、背景色以及字体等框架。但是如果每做一个图,都要如此细调,代码将会非常繁琐,而且万一老板突然兴起要换风格时,代码修改将会非常痛苦。
幸运的是,ggplot2允许我们事先定制好图表样式,我们可以生成如mytheme或者myline这样的有明确配色主题的对象,到时候就像excel的定制保存图表模板或者格式刷,直接在生成的图表里引用格式刷型的主题配色,就可以快捷方便的更改图表内容,保持风格的统一了。
在运行之前,首先加载相关包
library(ggplot2)
library(dplyr)
library(ColorBrewer)
library(tidyr)
library(grid)
#载入格式刷
######
#定义好字体
windowsFonts(CA=windowsFont("Calibri"))
接下来是一个示范。我首先共享了我常用的一个主题刷,配色参考以下:
主体色:蓝色 085A9C ,红色 EF0808,灰色 526373
辅助色:浅黄色 FFFFE7,橙色 FF9418, 绿色 219431, 明黄色 FF9418,紫色 9C52AD
定制了mytheme, myline_blue, mycolour等多个对象:
1
#定义好字体
2 windowsFonts(CA=windowsFont("Calibri"))
3 #事先定制好要加图形的形状、颜色、主题等
4 #定制主题,要求背景全白,没有边框。然后所有的字体都是某某颜色
5 #定制主题,要求背景全白,没有边框。然后所有的字体都是某某颜色
6 mytheme<-theme_bw()+theme(legend.position="top",
7 panel.border=element_blank(),
8 panel.grid.major=element_line(linetype="dashed"),
9 panel.grid.minor=element_blank(),
10 plot.title=element_text(size=15,
11 colour="#003087",
12 family="CA"),
13 legend.text=element_text(size=9,colour="#003087",
14 family="CA"),
15 legend.key=element_blank(),
16 axis.text=element_text(size=10,colour="#003087",
17 family="CA"),
18 strip.text=element_text(size=12,colour="#EF0808",
19 family="CA"),
20 strip.background=element_blank()
21
22 )
23 pie_theme=mytheme+theme(axis.text=element_blank(),
24 axis.ticks=element_blank(),
25 axis.title=element_blank(),
26 panel.grid.major=element_blank())
27 #定制线的大小
28 myline_blue<-geom_line(colour="#085A9C",size=2)
29 myline_red<-geom_line(colour="#EF0808",size=2)
30 myarea=geom_area(colour=NA,fill="#003087",alpha=.2)
31 mypoint=geom_point(size=3,shape=21,colour="#003087",fill="white")
32 mybar=geom_bar(fill="#0C8DC4",stat="identity")
33 #然后是配色,考虑到样本的多样性,可以事先设定颜色,如3种颜色或7种颜色的组合
34 mycolour_3<-scale_fill_manual(values=c("#085A9C","#EF0808","#526373"))
35 mycolour_7<-scale_fill_manual(values=c("#085A9C","#EF0808","#526373",
36 "#FFFFE7","#FF9418","#219431","#9C52AD"))
37 mycolour_line_7<-scale_color_manual(values=c("#085A9C","#EF0808","#526373",
38 "#0C8DC4","#FF9418","#219431","#9C52AD"))
把以上代码在R里面运行以后,就可以直接使用了。譬如以下:
1)先生成一个简单的图表:
简单地指定x轴为离散型变量species,y为求和,会得到下面的柱形图
这时候,套用一下之前设置好的主题(mytheme),背景、坐标轴还有字体颜色就相应改变了。
然后,因为之前格式刷部分我设定了一个蓝色的柱形图样式(mybar),这里直接引用的话,就可以直接生成蓝色的柱形图了。
有了事先设定的一些格式刷以后,我们就可以快速有效地作图了。
但是在作图之前,就像excel作图总要先把数据用处理成想要的形式 。在excel里面,我们常用的是数据透视表或者一些公式辅助,而在R里,则是用一些常用的包,如dplyr及tidyr,对数据进行重塑再造
在我之前看的那两本ggplot2的书里,基本用的都是reshape2+plyr的组合。但实际上hadley后续出的dplyr与tidyr更加有用。具体的使用方法,在JHU Getting and cleaning data有介绍,老师还编了一个swirl课程供人使用,安装方法如下。
其他的也可以参考我这篇博文
总之,用好dplyr的话,你可以快速的把一些数据,如下面的股票逐笔成交记录
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22