京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何在STATA中做格兰杰因果关系检验
格兰杰因果检验相关的stata命令可以有三种。
方法一:
reg y L.y L.x (滞后1 期)
estat ic (显示AIC 与BIC 取值,以便选择最佳滞后期)
reg y L.y L.x L2.y L2.x
estat ic (显示AIC 与BIC 取值,以便选择最佳滞后期)
……
根据信息准则确定p, q 后,检验 ;所用的命令就是test
特别说明,此处p和q的取值完全可以不同,而且应该不同,这样才能获得最有说服力的结果,这也是该方法与其他两个方法相比的最大优点,该方法缺点是命令过于繁琐。
方法二:
ssc install gcause (下载格兰杰因果检验程序gcause)
gcause y x,lags(1) (滞后1 期)
estat ic (显示AIC 与BIC 取值,以便选择最佳滞后期)
gcause y x,lags(2) (滞后2 期)
estat ic (显示AIC 与BIC 取值,以便选择最佳滞后期)
特别说明,在选定滞后期后,对于因果关系检验,该方法提供F检验和卡方检验。如果两个检验结论不一致,原则上用F检验更好些。因为卡方检验是一个大样本检验,而实证检验所能获得的样本容量通常并不大,如果采用的是大样本,则以卡方检验结果为准。不过,通常情况下,大样本下两个检验结论一致,所以不用担心。综上,F检验适用范围更广。
方法三:
var y x (向量自回归)
vargranger
注意:1、如果实际检验过程中AIC和BIC越来越小,直到不能再滞后(时间序列长度所限)。这样的话,可能数据确实存在高阶自相关。在这种情况下,可以限制p的取值,比如取最大的 或 , 。
2、回归结果中各期系数显著性不同,有的不显著有的显著,如实汇报就可以。最好全部汇报。不显著的期数可能意味着那一期的自相关很弱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07