京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算与大数据或成电力行业未来发展核心技术
在全球新一轮科技革命和产业变革中,以云计算、大数据为代表的信息技术,与智能电网为代表的电力技术高度融合,将构建能源发展的新格局、激发经济增长的新活力、开启社会美好新生活、开启人类文明的新篇章。
今年8月,国务院公布了《“十三五”国家科技创新规划》,规划提到了9大重点工程,包括种业自主创新、煤炭清洁高效利用、智能电网、天地一体化信息网络、大数据、智能制造和机器人、重点新材料研发及应用、京津冀环境综合治理和健康保障。其中多个工程与能源电力相关。
电力大数据是电力行业的重点研究领域。美国电科院早在2012年就启动智能电网数据研究项目,研究在输配电上的大数据应用;美国太平洋燃气电力公司、加拿大的电力公司也基于用户用电数据开展了大数据技术应用研究;美国一家能源及排放管理公司与IBM公司合作开发,2014年发布了针对智能电网的大数据分析系统;2014年4月,Oracle数据库管理系统又提出了智能电网大数据公共数据模型。
法国、德国、英国、加拿大等国外电力公司则通过安装智能电表,对用户用电数据进行实时测量,计算出合理的用电消费计划并推荐给用户。
2013年,中国电机工程学会发布了《电力大数据发展白皮书》,国家科技部2014年下达了3项863项目,支持智能电网大数据研究。自2012年以来,国家电网公司启动了多项智能电网大数据研究项目,如江苏省电力公司于2013年初率先开始建设营销大数据智能分析系统,开展了基于大数据的客户服务新模式应用开发研究;北京市电力公司等也正在积极推进营配数据一体化基础上的智能电网大数据应用研究。
目前,国家电网公司全网入池服务器总数量5000多台,初步实现全网资源池的统一视图和资源基本可控、可调,是国内最大的企业基础设施私有云,节省了大量的服务器采购成本、机房空间和运维成本。
从近年来电力行业信息化发展趋势来看,电力大数据已成为电力行业发展的核心。主要体现在以下几个方面:
第一,云计算、大数据与智能电网都与国家未来的发展战略密切相关。云计算、数据和智能电网的研究都已经被列入国务院2015年发布的《关于积极推进“互联网+”行动的指导意见》。大数据和智能电网还被列入了《“十三五”国家科技创新规划》的9大重大工程项目。
第二,企业私有云和混合云将成为未来云计算的主要发展方向。国网信通产业集团下属中电普华信息技术有限公司在国家“十二五”建设期间,在企业云平台建设方面已经取得丰硕的成果,所开发的“国家电网软硬件资源池”和“云资源管理平台”项目,已经在国家电网总部及27个国家电网省电力公司得到了全面的部署。
第三,电力大数据既是云计算上的主要应用,又为云计算发展提供了新的动力。智能电网提供的电网运行数据和海量用户数据,为电力大数据分析提供了坚实的基础。
第四,全球能源互联网能够让我们跳出地球看地球。如果我们能够把世界上最大的三个电网:美国电网、欧洲电网和中国电网联结起来,就能够实现美国、欧洲和中国三大区域的电力自动调度和削峰填谷,为解决全世界的能源短缺、气候变暖及环境污染等问题打下坚实的基础。
在当前科技飞速发展的时代,以“大云物移”为代表的最新科技正引领国家信息技术的发展方向,并推动全球能源互联网的迅猛发展,成为传统产业升级和新兴产业发展的核心动力。
根据国家“一带一路”发展战略,国家电网公司提出了建设全球能源互联网的宏伟构想。建设网架坚强、广泛互联、高度智能、开放互动的全球能源互联网,需要广泛应用“大云物移”等新技术。
电力大数据能够为电力行业带来效益上的提升。2012年,美国智能电表的运作台数为1.39亿台,2020年将达到3.77亿台。美国德克萨斯州能源公司服务2000万居民,推出了智能电表技术为客户带来现实利益,客户通过现金返还计划获得3000万美金。大数据在智能电网上的应用使美国每年能耗降低10%,每年节省800亿美元新建电厂的费用。
数字化和云化正在改变着我们的工作和生活,也在改变现有的商业模式。数字化与云化转型和成为数字化与云化企业是每个企业的战略选择,而电力行业的数字化与云化转型的目标就是智能电网。
研究表明,电力大数据市场潜力巨大,预计到2019年全球市场空间将达到55亿美元,年复合增长率25%。美国电科院调查显示当前世界仅有不到5%的电力公司已完成大数据基础设施构建,预计5年后将提升至20%~30%。
电力大数据技术立足于电力系统业务服务需求,根植于云计算,以云计算技术为基础。未来,云平台是下一代企业IT构架必不可少的组成部分,是企业发展不可或缺的技术,企业IT云化是企业IT转型的关键。云计算能够整合智能电网系统内部计算处理和存储资源,提高电网处理和交互能力,成为电网强有力的技术支撑。
利用云计算等新技术,也可使信息流和业务流贯穿能源生产、传输、消费全过程,使生产者、消费者平等参与能源交易与创新,持续推动能源生产和消费革命.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04