
云计算与大数据或成电力行业未来发展核心技术
在全球新一轮科技革命和产业变革中,以云计算、大数据为代表的信息技术,与智能电网为代表的电力技术高度融合,将构建能源发展的新格局、激发经济增长的新活力、开启社会美好新生活、开启人类文明的新篇章。
今年8月,国务院公布了《“十三五”国家科技创新规划》,规划提到了9大重点工程,包括种业自主创新、煤炭清洁高效利用、智能电网、天地一体化信息网络、大数据、智能制造和机器人、重点新材料研发及应用、京津冀环境综合治理和健康保障。其中多个工程与能源电力相关。
电力大数据是电力行业的重点研究领域。美国电科院早在2012年就启动智能电网数据研究项目,研究在输配电上的大数据应用;美国太平洋燃气电力公司、加拿大的电力公司也基于用户用电数据开展了大数据技术应用研究;美国一家能源及排放管理公司与IBM公司合作开发,2014年发布了针对智能电网的大数据分析系统;2014年4月,Oracle数据库管理系统又提出了智能电网大数据公共数据模型。
法国、德国、英国、加拿大等国外电力公司则通过安装智能电表,对用户用电数据进行实时测量,计算出合理的用电消费计划并推荐给用户。
2013年,中国电机工程学会发布了《电力大数据发展白皮书》,国家科技部2014年下达了3项863项目,支持智能电网大数据研究。自2012年以来,国家电网公司启动了多项智能电网大数据研究项目,如江苏省电力公司于2013年初率先开始建设营销大数据智能分析系统,开展了基于大数据的客户服务新模式应用开发研究;北京市电力公司等也正在积极推进营配数据一体化基础上的智能电网大数据应用研究。
目前,国家电网公司全网入池服务器总数量5000多台,初步实现全网资源池的统一视图和资源基本可控、可调,是国内最大的企业基础设施私有云,节省了大量的服务器采购成本、机房空间和运维成本。
从近年来电力行业信息化发展趋势来看,电力大数据已成为电力行业发展的核心。主要体现在以下几个方面:
第一,云计算、大数据与智能电网都与国家未来的发展战略密切相关。云计算、数据和智能电网的研究都已经被列入国务院2015年发布的《关于积极推进“互联网+”行动的指导意见》。大数据和智能电网还被列入了《“十三五”国家科技创新规划》的9大重大工程项目。
第二,企业私有云和混合云将成为未来云计算的主要发展方向。国网信通产业集团下属中电普华信息技术有限公司在国家“十二五”建设期间,在企业云平台建设方面已经取得丰硕的成果,所开发的“国家电网软硬件资源池”和“云资源管理平台”项目,已经在国家电网总部及27个国家电网省电力公司得到了全面的部署。
第三,电力大数据既是云计算上的主要应用,又为云计算发展提供了新的动力。智能电网提供的电网运行数据和海量用户数据,为电力大数据分析提供了坚实的基础。
第四,全球能源互联网能够让我们跳出地球看地球。如果我们能够把世界上最大的三个电网:美国电网、欧洲电网和中国电网联结起来,就能够实现美国、欧洲和中国三大区域的电力自动调度和削峰填谷,为解决全世界的能源短缺、气候变暖及环境污染等问题打下坚实的基础。
在当前科技飞速发展的时代,以“大云物移”为代表的最新科技正引领国家信息技术的发展方向,并推动全球能源互联网的迅猛发展,成为传统产业升级和新兴产业发展的核心动力。
根据国家“一带一路”发展战略,国家电网公司提出了建设全球能源互联网的宏伟构想。建设网架坚强、广泛互联、高度智能、开放互动的全球能源互联网,需要广泛应用“大云物移”等新技术。
电力大数据能够为电力行业带来效益上的提升。2012年,美国智能电表的运作台数为1.39亿台,2020年将达到3.77亿台。美国德克萨斯州能源公司服务2000万居民,推出了智能电表技术为客户带来现实利益,客户通过现金返还计划获得3000万美金。大数据在智能电网上的应用使美国每年能耗降低10%,每年节省800亿美元新建电厂的费用。
数字化和云化正在改变着我们的工作和生活,也在改变现有的商业模式。数字化与云化转型和成为数字化与云化企业是每个企业的战略选择,而电力行业的数字化与云化转型的目标就是智能电网。
研究表明,电力大数据市场潜力巨大,预计到2019年全球市场空间将达到55亿美元,年复合增长率25%。美国电科院调查显示当前世界仅有不到5%的电力公司已完成大数据基础设施构建,预计5年后将提升至20%~30%。
电力大数据技术立足于电力系统业务服务需求,根植于云计算,以云计算技术为基础。未来,云平台是下一代企业IT构架必不可少的组成部分,是企业发展不可或缺的技术,企业IT云化是企业IT转型的关键。云计算能够整合智能电网系统内部计算处理和存储资源,提高电网处理和交互能力,成为电网强有力的技术支撑。
利用云计算等新技术,也可使信息流和业务流贯穿能源生产、传输、消费全过程,使生产者、消费者平等参与能源交易与创新,持续推动能源生产和消费革命.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16