
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
1.首先,需要两列时间序列数据,将他们命名为future4,future5,存入eviews。
2.对两组数据取对数,得新的数据:P4=log(future4),P5=log(future5)。可在eviews中点击Genr输入p4=log(future4)可自动产生对数数列。
为何取对数?:可以部分消除异方差的问题,另外,其差分可以表示发展速度的对数,也可以消除序列相关的问题.有时候要看经济意义!取对数也可减少数据的波动,在高频数据中尤是。变量取对数是为了消除异方差,系数也是弹性系数,主要是为了消除金融时间序列的异方差现象,可以将可能的非线性关系转化为线性关系,减少变量的极端值、非正态分布以及异方差性。
针对上面提到的非线性关系转化为线性关系,做进一步的解释:经济序列通常做对数化处理,因为log有很多优良特性。如取对数,很容易操作,正如上面所说,输入log(x)就可以产生原数列相应的对数数列。还有一些关系式如log(a*b)=log(a)+log(b),log(a^2)=2*log(a),这种特性可以很容易的把函数之间的关系线性化。加上log,常可以使得经济数列变得更容易处理。)
3.对两个时间序列分别做ADF检验。
1.eviews中选取时间序列P4,右键=》open。在新的窗口中点击 view=》unit root test。
2.ADF检验需要对3个模型依次检验,所以在unit root test窗口中先①选:level、trend and
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
intercept。然后确认=》得到
第一行是所得t值,下面3行是临界值。t=-2.0665>临界值,因此非平稳。因此要继续检验②:level、intercept,假设还是非平稳。继续检验③:level none。假设还是非平稳,则做一阶差分,即将level换成1st difference,将之前①②③从新来过,一旦t<临界值就可以停止了。若level时,t值均大于临界值,则为非平稳序列。若1st difference的一阶差分时,变为平稳的,就是1阶单整,记为I(1),依次类推。
4.协整检验
得出两个相同的单整时间序列,P5 说明两时间序列存在接下来存在协整的可能。否则就不可能协整。
下面采用EG(Engle-Granger)两步法进行协整检验:
EG两步法,分两步。第一步,计算非均衡误差et,第二步,检验单整性。et为稳定序列则为协整。
操作:选取P4 ,P5 然后右键=》open=》as group。新窗口中点击proc=》make equation=》确定。得到等式。然后在新窗口中点击proc=》make residual series=》ok。从而得到残差项时间序列et。接着对该序列进行adf检验(如上所述)。若残差项平稳,则存在(1,1)阶协整。如果et为1阶单整,则变量Y,X为(2,1)阶协整。
2012年4月13日补充:需要注意的是:这里的DF或ADF检验是针对协整计算的残差项而非真正的非均衡误差,因此拒绝零假设的机会比实际情形大,所以临界值并非EVIEWS自带的参考值。参考临界值如下:
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
另外,本文参照了高等教育出版社《计量经济学》文中并未提到EG两步法的第二步何时不存在协整。因此建议,可以采用jj检验,也就是在数据open as group后点击view==》点击cointegration test将直接显示协整检验的结果。图片如下,可以看到,红线处指出,是否存在协整关系。系数大小等信息都会在结果中显示出来。
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
协整关系存在后,就可以建立误差修正模型(ECM)了。
为什么呢?因为Engle和Granger 1987年提出Granger表述定理:如果变量X与Y是协整的,他们之间的短期非均衡关系总能由一个误差修正模型表述。数据分析培训
但是多元的如何,这里还未了解。
回归模型中对变量取对数的作用是什么
问题是:在Include in test equation中,是否含有常数项、常数和趋势项、或二者都不包含,我应该选哪个?
回答说:
序列有非0均值,但没有时间趋势,选常数项;
序列随时间变化有上升或下降趋势,选常数和趋势项‘
序列在0均值上下波动,选二者都不包含。
————————————————————————————————
另外,个人现有一点不明,即ADF检验时,unit root test中,lag length这里应该怎么选,原因是什么?来龙去脉还未了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18