模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
1.首先,需要两列时间序列数据,将他们命名为future4,future5,存入eviews。
2.对两组数据取对数,得新的数据:P4=log(future4),P5=log(future5)。可在eviews中点击Genr输入p4=log(future4)可自动产生对数数列。
为何取对数?:可以部分消除异方差的问题,另外,其差分可以表示发展速度的对数,也可以消除序列相关的问题.有时候要看经济意义!取对数也可减少数据的波动,在高频数据中尤是。变量取对数是为了消除异方差,系数也是弹性系数,主要是为了消除金融时间序列的异方差现象,可以将可能的非线性关系转化为线性关系,减少变量的极端值、非正态分布以及异方差性。
针对上面提到的非线性关系转化为线性关系,做进一步的解释:经济序列通常做对数化处理,因为log有很多优良特性。如取对数,很容易操作,正如上面所说,输入log(x)就可以产生原数列相应的对数数列。还有一些关系式如log(a*b)=log(a)+log(b),log(a^2)=2*log(a),这种特性可以很容易的把函数之间的关系线性化。加上log,常可以使得经济数列变得更容易处理。)
3.对两个时间序列分别做ADF检验。
1.eviews中选取时间序列P4,右键=》open。在新的窗口中点击 view=》unit root test。
2.ADF检验需要对3个模型依次检验,所以在unit root test窗口中先①选:level、trend and
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
intercept。然后确认=》得到
第一行是所得t值,下面3行是临界值。t=-2.0665>临界值,因此非平稳。因此要继续检验②:level、intercept,假设还是非平稳。继续检验③:level none。假设还是非平稳,则做一阶差分,即将level换成1st difference,将之前①②③从新来过,一旦t<临界值就可以停止了。若level时,t值均大于临界值,则为非平稳序列。若1st difference的一阶差分时,变为平稳的,就是1阶单整,记为I(1),依次类推。
4.协整检验
得出两个相同的单整时间序列,P5 说明两时间序列存在接下来存在协整的可能。否则就不可能协整。
下面采用EG(Engle-Granger)两步法进行协整检验:
EG两步法,分两步。第一步,计算非均衡误差et,第二步,检验单整性。et为稳定序列则为协整。
操作:选取P4 ,P5 然后右键=》open=》as group。新窗口中点击proc=》make equation=》确定。得到等式。然后在新窗口中点击proc=》make residual series=》ok。从而得到残差项时间序列et。接着对该序列进行adf检验(如上所述)。若残差项平稳,则存在(1,1)阶协整。如果et为1阶单整,则变量Y,X为(2,1)阶协整。
2012年4月13日补充:需要注意的是:这里的DF或ADF检验是针对协整计算的残差项而非真正的非均衡误差,因此拒绝零假设的机会比实际情形大,所以临界值并非EVIEWS自带的参考值。参考临界值如下:
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
另外,本文参照了高等教育出版社《计量经济学》文中并未提到EG两步法的第二步何时不存在协整。因此建议,可以采用jj检验,也就是在数据open as group后点击view==》点击cointegration test将直接显示协整检验的结果。图片如下,可以看到,红线处指出,是否存在协整关系。系数大小等信息都会在结果中显示出来。
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
协整关系存在后,就可以建立误差修正模型(ECM)了。
为什么呢?因为Engle和Granger 1987年提出Granger表述定理:如果变量X与Y是协整的,他们之间的短期非均衡关系总能由一个误差修正模型表述。数据分析培训
但是多元的如何,这里还未了解。
回归模型中对变量取对数的作用是什么
问题是:在Include in test equation中,是否含有常数项、常数和趋势项、或二者都不包含,我应该选哪个?
回答说:
序列有非0均值,但没有时间趋势,选常数项;
序列随时间变化有上升或下降趋势,选常数和趋势项‘
序列在0均值上下波动,选二者都不包含。
————————————————————————————————
另外,个人现有一点不明,即ADF检验时,unit root test中,lag length这里应该怎么选,原因是什么?来龙去脉还未了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03