京公网安备 11010802034615号
经营许可证编号:京B2-20210330
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
1.首先,需要两列时间序列数据,将他们命名为future4,future5,存入eviews。
2.对两组数据取对数,得新的数据:P4=log(future4),P5=log(future5)。可在eviews中点击Genr输入p4=log(future4)可自动产生对数数列。
为何取对数?:可以部分消除异方差的问题,另外,其差分可以表示发展速度的对数,也可以消除序列相关的问题.有时候要看经济意义!取对数也可减少数据的波动,在高频数据中尤是。变量取对数是为了消除异方差,系数也是弹性系数,主要是为了消除金融时间序列的异方差现象,可以将可能的非线性关系转化为线性关系,减少变量的极端值、非正态分布以及异方差性。
针对上面提到的非线性关系转化为线性关系,做进一步的解释:经济序列通常做对数化处理,因为log有很多优良特性。如取对数,很容易操作,正如上面所说,输入log(x)就可以产生原数列相应的对数数列。还有一些关系式如log(a*b)=log(a)+log(b),log(a^2)=2*log(a),这种特性可以很容易的把函数之间的关系线性化。加上log,常可以使得经济数列变得更容易处理。)
3.对两个时间序列分别做ADF检验。
1.eviews中选取时间序列P4,右键=》open。在新的窗口中点击 view=》unit root test。
2.ADF检验需要对3个模型依次检验,所以在unit root test窗口中先①选:level、trend and
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
intercept。然后确认=》得到
第一行是所得t值,下面3行是临界值。t=-2.0665>临界值,因此非平稳。因此要继续检验②:level、intercept,假设还是非平稳。继续检验③:level none。假设还是非平稳,则做一阶差分,即将level换成1st difference,将之前①②③从新来过,一旦t<临界值就可以停止了。若level时,t值均大于临界值,则为非平稳序列。若1st difference的一阶差分时,变为平稳的,就是1阶单整,记为I(1),依次类推。
4.协整检验
得出两个相同的单整时间序列,P5 说明两时间序列存在接下来存在协整的可能。否则就不可能协整。
下面采用EG(Engle-Granger)两步法进行协整检验:
EG两步法,分两步。第一步,计算非均衡误差et,第二步,检验单整性。et为稳定序列则为协整。
操作:选取P4 ,P5 然后右键=》open=》as group。新窗口中点击proc=》make equation=》确定。得到等式。然后在新窗口中点击proc=》make residual series=》ok。从而得到残差项时间序列et。接着对该序列进行adf检验(如上所述)。若残差项平稳,则存在(1,1)阶协整。如果et为1阶单整,则变量Y,X为(2,1)阶协整。
2012年4月13日补充:需要注意的是:这里的DF或ADF检验是针对协整计算的残差项而非真正的非均衡误差,因此拒绝零假设的机会比实际情形大,所以临界值并非EVIEWS自带的参考值。参考临界值如下:
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
另外,本文参照了高等教育出版社《计量经济学》文中并未提到EG两步法的第二步何时不存在协整。因此建议,可以采用jj检验,也就是在数据open as group后点击view==》点击cointegration test将直接显示协整检验的结果。图片如下,可以看到,红线处指出,是否存在协整关系。系数大小等信息都会在结果中显示出来。
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
协整关系存在后,就可以建立误差修正模型(ECM)了。
为什么呢?因为Engle和Granger 1987年提出Granger表述定理:如果变量X与Y是协整的,他们之间的短期非均衡关系总能由一个误差修正模型表述。数据分析培训
但是多元的如何,这里还未了解。
回归模型中对变量取对数的作用是什么
问题是:在Include in test equation中,是否含有常数项、常数和趋势项、或二者都不包含,我应该选哪个?
回答说:
序列有非0均值,但没有时间趋势,选常数项;
序列随时间变化有上升或下降趋势,选常数和趋势项‘
序列在0均值上下波动,选二者都不包含。
————————————————————————————————
另外,个人现有一点不明,即ADF检验时,unit root test中,lag length这里应该怎么选,原因是什么?来龙去脉还未了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22