大数据:全新机遇还是一纸空谈
目前,人们对大数据及其价值的认知各有不同。一部分人认为大数据的价值在于帮助企业各部门获得新的洞察力并付诸行动;另一部分人认为大数据不过是天花乱坠的宣传而已。这两种观点都有可取之处,而有趣的是,这两种观点都成立。尽管外界对大数据大肆宣传,人们还是很快了解到大数据真正价值与空谈之间的区别。
弄清这种区别将非常有助于了解大数据价值(最好考虑投资大数据)并认清仍对大多数企业发展构成主要阻碍的挑战。姑且假设未来相关技术将逐渐成熟,并能通过释放其潜力创造价值。这种预测已在以往多种技术上都得到证实,大数据技术应该也不例外。制约大数据技术发展的主要瓶颈在于它自身的问题:人们会忽略大数据的严重依赖性,或认为这种依赖性仅仅是我们为创造价值而必须接受的前提。
这种依赖性是指用户认为在创造价值前,必须保持数据一致性,或在数据库等持久保存数据的系统内实现数据标准化,这需要企业大张旗鼓,投入数十亿美元,却导致效率低下和重复劳动。因此,在没有创造任何价值前,企业的项目投入已达到70%,用于数据识别、采集、迁移、存储及优化。虽然过去十年间分析技术已取得多次重大突破,而分析技术终端及平台数量激增,但与过去30年相比,企业分析解决方案开发及部署模式仍未发生变化。
令人关注的是,在利用大数据技术真正创造价值的行业内,大数据市场正呈现出不断细分的趋势,且这一趋势已逐渐明朗。我们最好从这些细分市场入手,深入了解大数据价值与空谈之间的区别。
能够体现大数据价值的领域
大数据技术在数据探索、趋势分析、调整机会分析等领域已获得成功应用。这看上去毋庸置疑,而以下两个共同点却不明显,但大数据技术在符合这些共同点的领域内已具有切实的可行性,并已站稳脚跟。
·全新的海量交互信息:基于Web的购物与数字化零售、移动端活动、社交媒体互动信息及互联网搜索条件。换言之就是全新的海量同类数据。
·重视营销机会:为产品销售提升潜在客户识别成功率,这种技术应用通常由大众化营销与媒体费用承担。
无法体现大数据价值的领域
随着数据同类性降低,导致获得洞察力的成本相应增长,大数据的价值开始降低,而对于大数据综合价值因素的炒作也导入歧途。在谈到典型的企业问题时,大数据鲜有成功案例。原因何在?
·业务问题已是老生常谈。这已经无需再议,可能在过去5-10年内使用“新型”数据是大数据技术顺利部署的成功因素之一。
·解决方案使用不同类型的组件。企业数据面临的挑战是它广泛分布在各种不同的技术和数据平台上。例如,数字化零售、电信业及社交媒体使用结构化数据,其表现形式相似;而企业数据则分布在主机、ETL(提取、转换和加载)工具、虚拟层、关系数据库、商业智能(BI)数据库、交易数据库以及数百种其它组件中,这些技术在过去30年中已不断发展。更糟糕的是,每种应用程序使用不同的数据模型,导致数据与其相关技术平台整合越来越复杂,因此,利用当前大数据工具访问企业数据,难以创造直接的价值。
这就是企业大部分业务问题与大数据无关的原因。这些业务问题实际上是分布式数据问题:在这种模型下,信息、数据、价值和分析广泛分布在不同的位置、技术平台和数据源内。但我们仍继续使用与以往相同的集中式模型来解决这一日趋严重的分布式问题。当用户能够通过常见的界面外观稳定地访问数据时,这些集中式模型能够发挥很大的作用,这在社交媒体、数字化零售等行业新的成功案例中屡见不鲜。但集中式模型却无法解决银行、保险、医疗行业及其它广泛的业务问题。
目前,企业实现大数据价值需对多种不同数据及功能体系进行数据整合及标准化规划。如不改变现有数据管理机制,那么企业解决方案采用越多的分布式组件,项目回报率越低。
大数据技术促进深度分析及分析性能取得技术突破,其价值毋庸置疑。但这种价值却被数据提取和/或整合成本破坏,导致价值/炒作的底线被轻易冲破。目前,市场在数据价值上多少存在一些分歧,其中一部分行业尚处于初创时期,可保持技术一致性,因此,这些行业可以暂时解决分布式数据的问题。
由于技术孤岛仍将持续存在,且数据仍保存在不同的位置,Gartner公司分析师Doug Laney预计到2017年,90%的大数据项目仍无法发挥它们的作用。Doug最近总结到,虽然数据复杂性、企业内外部数据的分布和离散度不断提升,但也不会因为大数据技术作出的各种承诺而承认系统及数据大规模整合项目的合理性,它们只是大数据价值的体现。
我们只有意识到大数据技术虽已占有一席之地,但仍受到分布式数据源的直接影响,才能尽早通过真正具有成本效益的途径,根据数据复杂度和分布情况,充分利用数据价值。
大多数企业可灵活使用双重数据策略:运用大数据技术对大量同类数据进行深入分析及机会辨别;或运用分布式数据应对运营、风险、管理等复杂但已为人所了解的挑战。人们将能够接受这种双重数据管理策略,充分发现、挖掘并管理大数据技术的价值,并在行业内实现不断灵活创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03