
python异常处理_python异常类型_python异常
#!/usr/bin/python
import traceback
try:
1/0
#except Exception,e:
# print traceback.format_exc()
except Exception as e:
print e
#!/usr/bin/python
import traceback
try:
1/0
#except Exception,e:
# print traceback.format_exc()
except Exception , e:
print e
Python的异常处理能力是很强大的,可向用户准确反馈出错信息。在Python中,异常也是对象,可对它进行操作。所有异常都是基类Exception的成员。所有异常都从基类Exception继承,而且都在exceptions模块中定义。Python自动将所有异常名称放在内建命名空间中,所以程序不必导入exceptions模块即可使用异常。一旦引发而且没有捕捉SystemExit异常,程序执行就会终止。如果交互式会话遇到一个未被捕捉的SystemExit异常,会话就会终止。
方式一:try语句:
1使用try和except语句来捕获异常
try:
block
except [exception,[data…]]:
block
try:
block
except [exception,[data…]]:
block
else:
block
该种异常处理语法的规则是:
· 执行try下的语句,如果引发异常,则执行过程会跳到第一个except语句。
· 如果第一个except中定义的异常与引发的异常匹配,则执行该except中的语句。
· 如果引发的异常不匹配第一个except,则会搜索第二个except,允许编写的except数量没有限制。
· 如果所有的except都不匹配,则异常会传递到下一个调用本代码的最高层try代码中。
· 如果没有发生异常,则执行else块代码。
例:
try:
f = open(“file.txt”,”r”)
except IOError, e:
print e
捕获到的IOError错误的详细原因会被放置在对象e中,然后运行该异常的except代码块
捕获所有的异常
try:
a=b
b=c
except Exception,ex:
print Exception,”:”,ex
使用except子句需要注意的事情,就是多个except子句截获异常时,如果各个异常类之间具有继承关系,则子类应该写在前面,否则父类将会直接截获子类异常。放在后面的子类异常也就不会执行到了。
2 使用try跟finally:
语法如下:
try:
block
finally:
block
该语句的执行规则是:
· 执行try下的代码。
· 如果发生异常,在该异常传递到下一级try时,执行finally中的代码。
· 如果没有发生异常,则执行finally中的代码。
第二种try语法在无论有没有发生异常都要执行代码的情况下是很有用的。例如我们在python中打开一个文件进行读写操作,我在操作过程中不管是否出现异常,最终都是要把该文件关闭的。
这两种形式相互冲突,使用了一种就不允许使用另一种,而功能又各异
2. 用raise语句手工引发一个异常:
raise [exception[,data]]
在Python中,要想引发异常,最简单的形式就是输入关键字raise,后跟要引发的异常的名称。异常名称标识出具体的类:Python异常是那些类的对象。执行raise语句时,Python会创建指定的异常类的一个对象。raise语句还可指定对异常对象进行初始化的参数。为此,请在异常类的名称后添加一个逗号以及指定的参数(或者由参数构成的一个元组)。
例:
try:
raise MyError #自己抛出一个异常
except MyError:
print ‘a error’
raise ValueError,’invalid argument’
捕捉到的内容为:
type = VauleError
message = invalid argument
3. 采用traceback(跟踪)模块查看异常
发生异常时,Python能“记住”引发的异常以及程序的当前状态。Python还维护着traceback(跟踪)对象,其中含有异常发生时与函数调用堆栈有关的信息。记住,异常可能在一系列嵌套较深的函数调用中引发。程序调用每个函数时,Python会在“函数调用堆栈”的起始处插入函数名。一旦异常被引发,Python会搜索一个相应的异常处理程序。如果当前函数中没有异常处理程序,当前函数会终止执行,Python会搜索当前函数的调用函数,并以此类推,直到发现匹配的异常处理程序,或者Python抵达主程序为止。这一查找合适的异常处理程序的过程就称为“堆栈辗转开解”(Stack Unwinding)。解释器一方面维护着与放置堆栈中的函数有关的信息,另一方面也维护着与已从堆栈中“辗转开解”的函数有关的信息。
格式:
try:
block
except:
traceback.print_exc()
示例:…excpetion/traceback.py
4. 采用sys模块回溯最后的异常
import sys
try:
block
except:
info=sys.exc_info()
print info[0],”:”,info[1]
或者以如下的形式:
import sys
tp,val,td = sys.exc_info()
sys.exc_info()的返回值是一个tuple, (type, value/message, traceback)
这里的type —- 异常的类型
value/message —- 异常的信息或者参数
traceback —- 包含调用栈信息的对象。
从这点上可以看出此方法涵盖了traceback.
5. 异常处理的一些其它用途
除了处理实际的错误条件之外,对于异常还有许多其它的用处。在标准 Python 库中一个普通的用法就是试着导入一个模块,然后检查是否它能使用。导入一个并不存在的模块将引发一个 ImportError 异常。你可以使用这种方法来定义多级别的功能――依靠在运行时哪个模块是有效的,或支持多种平台 (即平台特定代码被分离到不同的模块中)。
你也能通过创建一个从内置的 Exception 类继承的类定义你自己的异常,然后使用 raise 命令引发你的异常。如果你对此感兴趣,请看进一步阅读的部分。
下面的例子演示了如何使用异常支持特定平台功能。代码来自 getpass 模块,一个从用户获得口令的封装模块。获得口令在 UNIX、Windows 和 Mac OS 平台上的实现是不同的,但是这个代码封装了所有的不同之处。
例支持特定平台功能
# Bind the name getpass to the appropriate function
try:
import termios, TERMIOS
except ImportError:
try:
import msvcrt
except ImportError:
try:
from EasyDialogs import AskPassword
except ImportError:
getpass = default_getpass
else:
getpass = AskPassword
else:
getpass = win_getpass
else:
getpass = unix_getpass
termios 是 UNIX 独有的一个模块,它提供了对于输入终端的底层控制。如果这个模块无效 (因为它不在你的系统上,或你的系统不支持它),则导入失败,Python 引发我们捕捉的 ImportError 异常。
OK,我们没有 termios,所以让我们试试 msvcrt,它是 Windows 独有的一个模块,可以提供在 Microsoft Visual C++ 运行服务中的许多有用的函数的一个API。如果导入失败,Python 会引发我们捕捉的 ImportError 异常。
如果前两个不能工作,我们试着从 EasyDialogs 导入一个函数,它是 Mac OS 独有的一个模块,提供了各种各样类型的弹出对话框。再一次,如果导入失败,Python 会引发一个我们捕捉的 ImportError 异常。
这些平台特定的模块没有一个有效 (有可能,因为 Python 已经移植到了许多不同的平台上了),所以我们需要回头使用一个缺省口令输入函数 (这个函数定义在 getpass 模块中的别的地方)。注意我们在这里所做的:我们将函数 default_getpass 赋给变量 getpass。如果你读了官方 getpass 文档,它会告诉你 getpass 模块定义了一个 getpass 函数。它是这样做的:通过绑定 getpass 到正确的函数来适应你的平台。然后当你调用 getpass 函数时,你实际上调用了平台特定的函数,是这段代码已经为你设置好的。你不需要知道或关心你的代码正运行在何种平台上;只要调用 getpass,则它总能正确处理。
一个 try…except 块可以有一条 else 子句,就像 if 语句。如果在 try 块中没有异常引发,然后 else 子句被执行。在本例中,那就意味着如果 from EasyDialogs import AskPassword 导入可工作,所以我们应该绑定 getpass 到 AskPassword 函数。其它每个 try…except 块有着相似的 else 子句,当我们发现一个 import 可用时,就绑定 getpass 到适合的函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23