京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python异常处理_python异常类型_python异常
#!/usr/bin/python
import traceback
try:
1/0
#except Exception,e:
# print traceback.format_exc()
except Exception as e:
print e
#!/usr/bin/python
import traceback
try:
1/0
#except Exception,e:
# print traceback.format_exc()
except Exception , e:
print e
Python的异常处理能力是很强大的,可向用户准确反馈出错信息。在Python中,异常也是对象,可对它进行操作。所有异常都是基类Exception的成员。所有异常都从基类Exception继承,而且都在exceptions模块中定义。Python自动将所有异常名称放在内建命名空间中,所以程序不必导入exceptions模块即可使用异常。一旦引发而且没有捕捉SystemExit异常,程序执行就会终止。如果交互式会话遇到一个未被捕捉的SystemExit异常,会话就会终止。
方式一:try语句:
1使用try和except语句来捕获异常
try:
block
except [exception,[data…]]:
block
try:
block
except [exception,[data…]]:
block
else:
block
该种异常处理语法的规则是:
· 执行try下的语句,如果引发异常,则执行过程会跳到第一个except语句。
· 如果第一个except中定义的异常与引发的异常匹配,则执行该except中的语句。
· 如果引发的异常不匹配第一个except,则会搜索第二个except,允许编写的except数量没有限制。
· 如果所有的except都不匹配,则异常会传递到下一个调用本代码的最高层try代码中。
· 如果没有发生异常,则执行else块代码。
例:
try:
f = open(“file.txt”,”r”)
except IOError, e:
print e
捕获到的IOError错误的详细原因会被放置在对象e中,然后运行该异常的except代码块
捕获所有的异常
try:
a=b
b=c
except Exception,ex:
print Exception,”:”,ex
使用except子句需要注意的事情,就是多个except子句截获异常时,如果各个异常类之间具有继承关系,则子类应该写在前面,否则父类将会直接截获子类异常。放在后面的子类异常也就不会执行到了。
2 使用try跟finally:
语法如下:
try:
block
finally:
block
该语句的执行规则是:
· 执行try下的代码。
· 如果发生异常,在该异常传递到下一级try时,执行finally中的代码。
· 如果没有发生异常,则执行finally中的代码。
第二种try语法在无论有没有发生异常都要执行代码的情况下是很有用的。例如我们在python中打开一个文件进行读写操作,我在操作过程中不管是否出现异常,最终都是要把该文件关闭的。
这两种形式相互冲突,使用了一种就不允许使用另一种,而功能又各异
2. 用raise语句手工引发一个异常:
raise [exception[,data]]
在Python中,要想引发异常,最简单的形式就是输入关键字raise,后跟要引发的异常的名称。异常名称标识出具体的类:Python异常是那些类的对象。执行raise语句时,Python会创建指定的异常类的一个对象。raise语句还可指定对异常对象进行初始化的参数。为此,请在异常类的名称后添加一个逗号以及指定的参数(或者由参数构成的一个元组)。
例:
try:
raise MyError #自己抛出一个异常
except MyError:
print ‘a error’
raise ValueError,’invalid argument’
捕捉到的内容为:
type = VauleError
message = invalid argument
3. 采用traceback(跟踪)模块查看异常
发生异常时,Python能“记住”引发的异常以及程序的当前状态。Python还维护着traceback(跟踪)对象,其中含有异常发生时与函数调用堆栈有关的信息。记住,异常可能在一系列嵌套较深的函数调用中引发。程序调用每个函数时,Python会在“函数调用堆栈”的起始处插入函数名。一旦异常被引发,Python会搜索一个相应的异常处理程序。如果当前函数中没有异常处理程序,当前函数会终止执行,Python会搜索当前函数的调用函数,并以此类推,直到发现匹配的异常处理程序,或者Python抵达主程序为止。这一查找合适的异常处理程序的过程就称为“堆栈辗转开解”(Stack Unwinding)。解释器一方面维护着与放置堆栈中的函数有关的信息,另一方面也维护着与已从堆栈中“辗转开解”的函数有关的信息。
格式:
try:
block
except:
traceback.print_exc()
示例:…excpetion/traceback.py
4. 采用sys模块回溯最后的异常
import sys
try:
block
except:
info=sys.exc_info()
print info[0],”:”,info[1]
或者以如下的形式:
import sys
tp,val,td = sys.exc_info()
sys.exc_info()的返回值是一个tuple, (type, value/message, traceback)
这里的type —- 异常的类型
value/message —- 异常的信息或者参数
traceback —- 包含调用栈信息的对象。
从这点上可以看出此方法涵盖了traceback.
5. 异常处理的一些其它用途
除了处理实际的错误条件之外,对于异常还有许多其它的用处。在标准 Python 库中一个普通的用法就是试着导入一个模块,然后检查是否它能使用。导入一个并不存在的模块将引发一个 ImportError 异常。你可以使用这种方法来定义多级别的功能――依靠在运行时哪个模块是有效的,或支持多种平台 (即平台特定代码被分离到不同的模块中)。
你也能通过创建一个从内置的 Exception 类继承的类定义你自己的异常,然后使用 raise 命令引发你的异常。如果你对此感兴趣,请看进一步阅读的部分。
下面的例子演示了如何使用异常支持特定平台功能。代码来自 getpass 模块,一个从用户获得口令的封装模块。获得口令在 UNIX、Windows 和 Mac OS 平台上的实现是不同的,但是这个代码封装了所有的不同之处。
例支持特定平台功能
# Bind the name getpass to the appropriate function
try:
import termios, TERMIOS
except ImportError:
try:
import msvcrt
except ImportError:
try:
from EasyDialogs import AskPassword
except ImportError:
getpass = default_getpass
else:
getpass = AskPassword
else:
getpass = win_getpass
else:
getpass = unix_getpass
termios 是 UNIX 独有的一个模块,它提供了对于输入终端的底层控制。如果这个模块无效 (因为它不在你的系统上,或你的系统不支持它),则导入失败,Python 引发我们捕捉的 ImportError 异常。
OK,我们没有 termios,所以让我们试试 msvcrt,它是 Windows 独有的一个模块,可以提供在 Microsoft Visual C++ 运行服务中的许多有用的函数的一个API。如果导入失败,Python 会引发我们捕捉的 ImportError 异常。
如果前两个不能工作,我们试着从 EasyDialogs 导入一个函数,它是 Mac OS 独有的一个模块,提供了各种各样类型的弹出对话框。再一次,如果导入失败,Python 会引发一个我们捕捉的 ImportError 异常。
这些平台特定的模块没有一个有效 (有可能,因为 Python 已经移植到了许多不同的平台上了),所以我们需要回头使用一个缺省口令输入函数 (这个函数定义在 getpass 模块中的别的地方)。注意我们在这里所做的:我们将函数 default_getpass 赋给变量 getpass。如果你读了官方 getpass 文档,它会告诉你 getpass 模块定义了一个 getpass 函数。它是这样做的:通过绑定 getpass 到正确的函数来适应你的平台。然后当你调用 getpass 函数时,你实际上调用了平台特定的函数,是这段代码已经为你设置好的。你不需要知道或关心你的代码正运行在何种平台上;只要调用 getpass,则它总能正确处理。
一个 try…except 块可以有一条 else 子句,就像 if 语句。如果在 try 块中没有异常引发,然后 else 子句被执行。在本例中,那就意味着如果 from EasyDialogs import AskPassword 导入可工作,所以我们应该绑定 getpass 到 AskPassword 函数。其它每个 try…except 块有着相似的 else 子句,当我们发现一个 import 可用时,就绑定 getpass 到适合的函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10