京公网安备 11010802034615号
经营许可证编号:京B2-20210330
反思大数据新闻的思维逻辑(2)
(三)重信号而轻噪声。
大数据新闻重要的功能之一就是减少或消除不确定性,以预测未来事态。信息的指数型增长有时被人们视为万灵药,以至于人们根本分辨不清大数据中的信号和噪声。纳特·西尔弗在《信号与噪声》一书中指出,在任何一个数据丰富的领域,寻找预测模式都很容易。关键是要分辨出这些模式到底是噪声还是信号。他举了天气预报、政治选举预测、地震预测、棋牌游戏、股市、恐怖袭击等多个领域的例子,认为我们对未来的预测,应该基于可能性,以概率的方法思考问题,在不断试错中进步。从某种意义上说,大数据新闻传播也必然在预测和证实(证伪)之间有其独特的实践逻辑设计。但该认知逻辑必由两个组合的构成因素所支配:一个是新闻实践成功的程度所必须的认知资源,如信息、时间和计算能力。另一个是新闻实践推理主体所瞄准的认知目标的高度。由于这两个因素有程度之别,因此,某一具体的新闻实践行为是一个相对的、可比较的概念,而不是一个绝对的、没有参照物的死物。按此观点,只有当大数据新闻推理者心中拥有的认知任务和其可利用的认知资源相匹配时,推理才是正确的。对于传统新闻主体而言,认知的信息、时间和计算能力资源与作为高层次的大数据新闻推理者相比较而言,相对不丰富,因而,传统新闻主体的认知目标相对适中。尽管如此,我们可能还会以对自己有利的方式对这些数据进行分析和解释,而这些方式很可能与这些数据(所代表)的客观现实不相吻合。数据驱动预测机制可能会成功,也可能会失败。一旦我们否认数据处理过程中存在着主观因素,失败的概率就会增加。因此,在1970年出版的《未来的冲击》一书中,阿尔文·托夫勒对他所说的“信息超负荷”的一些后果进行了预测。他认为,尽管世界本身正走向分化,变得更加复杂,但人类仍会以坚持自身看法的方式使这个世界变得简单,这便是我们的防御机制。
(四)用事实说话和用数据说话。
大数据时代既要用事实说话,也要用数据说话,这句话是没错,但关键在于应该说清楚用事实说话是用具体的、抽样的个体性事实说话,而用数据说话是用抽象的、普遍性规律说话。前者是必然的理由,后者具有或然性。因为大数据样本不仅需要更多的时间去分析,它们往往还包含被抽样的所有个体的许多不同信息,从统计学的角度讲,这意味着这些样本是“高维的”。更多的维度增加了发现欺骗性关联的风险。比如,在医学研究中,可能会将某种药物的疗效与病人的身高联系在一起。但是这可能仅仅是因为大数据包含方方面面的信息,从身高、体重到眼睛的颜色等等。需要考虑的维度如此之多,有些维度显得重要似乎只是出于偶然。因此,用数据说话是媒体在大数据时代展现共识性、公信力的重要手段,但不是必不可少的手段。
(五)重传者分析而轻受众理解。
时下西方媒体惯常于通过对数据挖掘的方式进行新闻报道,通过仔细分析大量数据来揭示有意义的新的关系、趋势和模式,笔者试问:这些发现的所谓常规新闻中不能体现的逻辑,真的能帮助读者对新闻事件进行深度解读吗?当然,无可厚非的是计算机领域的科学家通过开发出卓越的计算能力和信息存储技术,让大数据的积累成为可能。但是收集数据及存储信息与理解这些内容并不是一回事。了解大数据的真正意义并不等同于对小数据进行解读。对于广大非专业的受众而言,对大数据分析结果的理解绝不应是简单回忆,而是具有历史的连续性和非连续性特点,即尽管过去了的东西其本身不可能原样再现和重演,这是讲的非连续性。但历史事件一旦过去,它总会给后人留下对它的某种理解,这理解就是给出历史事件的意义,正是这理解才使得一去不复返的历史事件持存着、继续着,而这也就是历史连续性的具体内涵。而大数据新闻因为过多的强调非结构化序列的连续性而割裂新闻事件历史意义的非连续性传承,从而使得新闻历史意义空洞化,从而加大其随机性定义生成的可能性,使得新闻总体上缺乏历史必然性的观照。
综上,(自然)科学视域下的大数据新闻以探索统一性的、普遍的本质为己任,其新闻客观性逻辑就是最大普遍性,最大的同一性就是最大的客观性。而人文科学视域下的传统新闻在于追求个体性的人生意义,其客观性诉求在于将普遍意义与丰富的个体性的人文意义统一起来。具言之,大数据新闻客观性来源于对一个个具体的个体所持有的丰富意义域向普遍性方向进行抽象的结果,其特征是一步一步地撇开个体身上道德的、功用的、审美的和哲学的意义等,以至最终达到最为抽象的同一性。反其道而行之,传统新闻客观性则在于首先以抽象的同一性意义为逻辑起点,超越但不抛弃抽象走向具体,通过把功用的、审美的和道德的意义与普遍意义融贯在一起,构建一个包括所有这些意义在内的有机统一体。这就是大数据新闻实践更大的理性——人文法则所必须遵循的根本逻辑和基本途径。这无疑也应该是当下大数据新闻研究的基本方向和进路。那些一味坚持大数据新闻普遍本质的自然科学研究范式,既不能深刻反映社会意义的原型结构与超自然的高位阶的社会信息需求,也不是大数据理性的完满表现。因为,对于人类社会而言,超越大数据理性的更大的理性原则是人文法则,是人生的根本意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26