
主成分分析法和因子分析法得出的主成分得分有什么区别
在主成分分析和因子分析的结果中,都会产生成分得分系数矩阵,用该矩阵中的系数与变量标准化之后的值对应相乘相加,便得出标准化的主成分得分,并且该值与“保存为变量”输出的FAC1_1等是相等的(略微的差异应该是计算时四舍五入的误差)。那么,问题就是,在计算综合得分时,要根据方差贡献率对主成分得分F1、F2等进行加权,那么用到的主成分得分是主成分分析法计算得到的主成分得分呢?还是因子分析法计算得到的主成分得分呢?
解答:
在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果你设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。
我还有个问题,尽管主成分分析法和因子分析法计算综合得分的方法是一致的,但是由于这两种方法在计算综合得分时所用的主成分得分或公因子得分(如F1、F2等)不同。主成分得分是根据主成分分析(未旋转)得出的主成分得分系数矩阵乘以变量(X1、X2等)的标准化值计算得出的,公因子得分是根据因子分析(经过旋转)得出的因子得分系数矩阵乘以变量(X1、X2等)的标准化值计算得出的。由于主成分分析(未旋转)得出的主成分得分系数矩阵和因子分析(经过旋转)得出的因子得分系数矩阵不同,所以计算得出的主成分得分与因子得分也不同,进而导致两种方法下计算得出的综合得分也不同,并且,根据综合得分排序的结果也不同。
所以,才有这样的疑惑:在计算综合得分时,到底应该用主成分分析还是因子分析?追问:主成分分析中各主成分的得分是可以准确计算的;而因子分析中各公因子得分只能进行估计。
因子分析中各公因子得分难道不能通过因子得分系数矩阵乘以变量的标准化值计算得出吗?而且,在SPSS操作中,有一处可选“保存为变量”,根据这个输出的新变量FAC1_1等不是各公因子得分吗?
按楼主所说,重点就在于主成分分析和因子分析两种分析方法的选择上,得分两者都有,是方法运算的结果。
两个方法操作流程类似,侧重点不同,主成分侧重信息贡献,而因子分析侧总成因清晰性。
你这两个问题我也不清楚呀!
哪位大神能解答呀??
再追加个问题:当相关系数矩阵中,如果有小于0.3的,是不是就不能用主成分分析了??
解答:主成分分析的思想是降维,而降维的基础是变量之间具有较高的相关性。所以,相关系数矩阵中有小于0.3是正常的,因为主成分分析并不要求所有变量都相关。但是,相关系数不能全部都很小,应该有一部分变量之间的相关系数是比较大的,比如大于0.6,这样才满足降维的基础。否则,把不相关的变量放入一个维度,就失去实际意义了。
因子分析与主成分分析的异同点:都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15