
大数据下民意形态与协商民主
互联网时代把人类社会带入了以“PB”(1PB=1024TB)为单位的大数据时代。在大数据时代下,民意形态悄然发生了以下三重变迁。
民意测量:从样本转向总体
恩格斯认为,“历史是这样创造的:……有无数互相交错的力量,有无数个力的平行四边形,由此就产生出一个合力,即历史结果……每个意志都对合力有所贡献”。对每个个体独特历史价值的认识,构成协商民主最基本的理论渊源。正是基于协商民主的纽带,微观个体才得以平等地融入政治系统与政府治理流程。细微的利益诉求和意志表达,通过协商民主场域无时无刻的讨论、互动等输出为民主的政治选择与科学的公共政策。在工业时代的民主协商中,原子化的分散公民个体直接面对权力机器,并等待着权力有选择地抽取而进入协商场域。而在大数据时代下,网络悄然赋予普罗大众一种特殊的“解构”工具,原子化个体可以低成本甚至零成本联合起来,发出日益响亮的声音。
对于如何获取民意,小数据时代基于调查小数据的量化统计分析方法,曾具有数据调查与数据分析的显著优势,往往采取抽样方式,以最少样本数据获得最多民意信息。但是,在大数据时代,样本=总体。因为调查数据的优势逐渐丧失,大数据分析不再满足于基于抽样的民意调查。而相比于小样本数据,大数据具有巨大的数据选择空间,可以多维度、多视角地进行数据分析。大数据是信息网络记录和量化的数据,并能更为真实地体现民意,因为它不是来源于数据收集,而是忠实于数据记录。数据记录主要存在三种来源:互联网、社交网络、传感器。大数据的自动记录将碎片化民意信息综合化,形成系统、综合化、动态、可视化的整体民意信息,从而为更民主、更科学的决策奠定了更为坚实的民意基础。
大数据时代,可以通过一系列测量技术来获取民意大数据,并通过云计算,使其趋于指数化与可视化。大数据分析基于总体样本,将碎片化民意信息整合起来,形成系统民意,并且进一步利用网络图形学技术,通过多元化、多维图形显示方法,来描述大数据及其代表的民意变迁。我国国内主流网络媒体(如百度指数、新浪微博指数、天涯指数)已通过指数分析、可视化对民意大数据进行数据挖掘。在大数据网络平台上,个体不再以分散化方式进行微弱的话语表达,而是借助于网络工具将微弱的话语表达转化为大数据的数据形式,并通过网络云计算汇聚成为响亮的民意,融入权力行使的所有环节。
大数据下中国特色协商民主创新
阿尔文·托夫勒将社会发展图式归纳为农业社会第一次浪潮、工业社会第二次浪潮、信息社会第三次浪潮的起伏推进。在信息文明时代,数字协商民主已成为竞争高地。协商民主已经不单纯是权力主导型协商的独奏,而是三重领域协商民主的协奏。
第一领域:权力主导型协商。中国协商民主脉络经历了群众路线—政治协商—协商民主—数字协商民主,从而形成了一种既体现中国传统文化精粹,又具有基于主体间性的“交往—行动”的现代协商民主精神。第二领域:网络自协商民主。大数据网络构成了第二领域网络自协商的空间。网络秩序可借助于虚拟空间的自约束、自协商、自组织。在网络自治空间中,虚拟公决、虚拟裁判、网络集体行动的运作,应以网络公约为准绳,以公民权利为底线,以网民理性审查为保障,通过相互制衡实现网络自秩序。第三领域:数字协商民主。这一领域的协商民主是权力主导型协商与网络自协商通过交融与互嵌而形成的新型数字民主平台。数字协商民主融入权力流程的所有环节。
虚拟空间将现实空间主客体结构转化为两维扁平交往结构。数字协商民主需相应建立扁平化国家—网络间信息协商通道。信息社会与大数据时代背景下,数字协商民主作为一种有限而宝贵的资源,不能同量同质地平均分配,而应与网络凝聚群相适应,重点对网络意见领袖进行网络吸纳,并通过网络意见领袖为中心的社会网络向各节点传播,从而以最低成本实现数字协商民主。
大数据时代协商民主体制需具备三种核心能力:整合大数据的能力、协商民主与大数据的融合能力、协商民主的网络吸纳能力。
第一种能力:整合大数据的能力。在大数据时代,政府不但可以点对点的传统协商方式获取民意,而且可以通过大数据收集、数据挖掘、数据分析,探索并分析大数据背后的社会民意。第二种能力:协商民主与大数据的融合能力。大数据技术正成为数字协商民主的润滑剂与加速器。人民当家作主的宏大理论借助大数据信息流,使无数个体的细微话语嵌入国家治理流程各环节,“民有”的人民主权理想正踏踏实实地着陆为民治的实践。协商民主体制与大数据的融合,将进一步提升中国协商民主的制度化水平。第三种能力:协商民主的网络吸纳能力。政府基于大数据民意,通过数字协商与网络民意吸纳,使网民能参与政策议程的创建、政策方案选择、政策执行,从而化解潜在冲突,强化公共政策合法性,并为政策执行创造良好生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08