京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下民意形态与协商民主
互联网时代把人类社会带入了以“PB”(1PB=1024TB)为单位的大数据时代。在大数据时代下,民意形态悄然发生了以下三重变迁。
民意测量:从样本转向总体
恩格斯认为,“历史是这样创造的:……有无数互相交错的力量,有无数个力的平行四边形,由此就产生出一个合力,即历史结果……每个意志都对合力有所贡献”。对每个个体独特历史价值的认识,构成协商民主最基本的理论渊源。正是基于协商民主的纽带,微观个体才得以平等地融入政治系统与政府治理流程。细微的利益诉求和意志表达,通过协商民主场域无时无刻的讨论、互动等输出为民主的政治选择与科学的公共政策。在工业时代的民主协商中,原子化的分散公民个体直接面对权力机器,并等待着权力有选择地抽取而进入协商场域。而在大数据时代下,网络悄然赋予普罗大众一种特殊的“解构”工具,原子化个体可以低成本甚至零成本联合起来,发出日益响亮的声音。
对于如何获取民意,小数据时代基于调查小数据的量化统计分析方法,曾具有数据调查与数据分析的显著优势,往往采取抽样方式,以最少样本数据获得最多民意信息。但是,在大数据时代,样本=总体。因为调查数据的优势逐渐丧失,大数据分析不再满足于基于抽样的民意调查。而相比于小样本数据,大数据具有巨大的数据选择空间,可以多维度、多视角地进行数据分析。大数据是信息网络记录和量化的数据,并能更为真实地体现民意,因为它不是来源于数据收集,而是忠实于数据记录。数据记录主要存在三种来源:互联网、社交网络、传感器。大数据的自动记录将碎片化民意信息综合化,形成系统、综合化、动态、可视化的整体民意信息,从而为更民主、更科学的决策奠定了更为坚实的民意基础。
大数据时代,可以通过一系列测量技术来获取民意大数据,并通过云计算,使其趋于指数化与可视化。大数据分析基于总体样本,将碎片化民意信息整合起来,形成系统民意,并且进一步利用网络图形学技术,通过多元化、多维图形显示方法,来描述大数据及其代表的民意变迁。我国国内主流网络媒体(如百度指数、新浪微博指数、天涯指数)已通过指数分析、可视化对民意大数据进行数据挖掘。在大数据网络平台上,个体不再以分散化方式进行微弱的话语表达,而是借助于网络工具将微弱的话语表达转化为大数据的数据形式,并通过网络云计算汇聚成为响亮的民意,融入权力行使的所有环节。
大数据下中国特色协商民主创新
阿尔文·托夫勒将社会发展图式归纳为农业社会第一次浪潮、工业社会第二次浪潮、信息社会第三次浪潮的起伏推进。在信息文明时代,数字协商民主已成为竞争高地。协商民主已经不单纯是权力主导型协商的独奏,而是三重领域协商民主的协奏。
第一领域:权力主导型协商。中国协商民主脉络经历了群众路线—政治协商—协商民主—数字协商民主,从而形成了一种既体现中国传统文化精粹,又具有基于主体间性的“交往—行动”的现代协商民主精神。第二领域:网络自协商民主。大数据网络构成了第二领域网络自协商的空间。网络秩序可借助于虚拟空间的自约束、自协商、自组织。在网络自治空间中,虚拟公决、虚拟裁判、网络集体行动的运作,应以网络公约为准绳,以公民权利为底线,以网民理性审查为保障,通过相互制衡实现网络自秩序。第三领域:数字协商民主。这一领域的协商民主是权力主导型协商与网络自协商通过交融与互嵌而形成的新型数字民主平台。数字协商民主融入权力流程的所有环节。
虚拟空间将现实空间主客体结构转化为两维扁平交往结构。数字协商民主需相应建立扁平化国家—网络间信息协商通道。信息社会与大数据时代背景下,数字协商民主作为一种有限而宝贵的资源,不能同量同质地平均分配,而应与网络凝聚群相适应,重点对网络意见领袖进行网络吸纳,并通过网络意见领袖为中心的社会网络向各节点传播,从而以最低成本实现数字协商民主。
大数据时代协商民主体制需具备三种核心能力:整合大数据的能力、协商民主与大数据的融合能力、协商民主的网络吸纳能力。
第一种能力:整合大数据的能力。在大数据时代,政府不但可以点对点的传统协商方式获取民意,而且可以通过大数据收集、数据挖掘、数据分析,探索并分析大数据背后的社会民意。第二种能力:协商民主与大数据的融合能力。大数据技术正成为数字协商民主的润滑剂与加速器。人民当家作主的宏大理论借助大数据信息流,使无数个体的细微话语嵌入国家治理流程各环节,“民有”的人民主权理想正踏踏实实地着陆为民治的实践。协商民主体制与大数据的融合,将进一步提升中国协商民主的制度化水平。第三种能力:协商民主的网络吸纳能力。政府基于大数据民意,通过数字协商与网络民意吸纳,使网民能参与政策议程的创建、政策方案选择、政策执行,从而化解潜在冲突,强化公共政策合法性,并为政策执行创造良好生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06