
五种物联网大数据数据类型
大数据,又称海量资料,是我们这个时代最伟大的经济机遇之一,但它的概念非常模糊。在一些谈话中,不同的参与者用大数据所表示的意思可能有以下三种:大量的数据、超出传统数据库功能的数据集、使用软件工具来分析前两个意义的数据集。
物联网最显著的效益,就是它能极大地扩展我们监控并测量真实世界中发生的事情的能力。工厂经理知道,如果发动机发出呜呜声,就表示出现了问题;一个有经验的房东会知道,烘干机的通风系统可能会被线头塞住,而导致安全隐忧。数据系统最终给予了我们精确了解这些问题的能力。
大数据是当下最热门的科技关键词,但大家对它的认知与定义非常模糊。
然而,挑战在于使这些让信息更有价值的系统,以及不断发展其商业模式。想一下智能恒温器在峰值功率很吃紧的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况,通过精确调整能源并最大化节省能源,使得夏季一般日子和节电日能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。
现在从消费者的角度思考。15分钟的数据更新间隔,都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的状况。相反,消费者所需要的,不过是一份能够指明一些指数趋势的月报表。
我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了大数据的一般类别,以及制造商和服务提供商所追求的机会。
五种大数据类型
状态数据
冷冻库中的压缩机是否正常运作?是否有一个已经停止运作了?不用担心,状态资料可以提供供货商和消费者关于物联网的实时动态数据。
状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。
看看Streetline是怎样找到停车位的。它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮助城市规划者,但对于消费者来说,实时状态数据才是最重要的。
定位资料
我的货物到哪儿了?到达目的地了吗?定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方、以及快速变化的环境中,效果并不明显。那些试图追踪搬运车以及堆高机的人,可能会需要实时的信息。
作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品出现,这意味着在为商业和工业用户提供服务的领域,存在着更大的市场;尤其是在时间紧迫,或是有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展,就是抓住了这样一个巨大的商机。
个性化资料
不要用个人资料的安全性来拒绝个性化数据,个性化数据指的是匿名的个人偏好资料。消费者自然会对自动化产生怀疑,因为比起你的舒适,一些住宅管理系统更关心节省的成本,所以往往会让你困在一个昏暗的办公室者冰冷的饭店客房之中。自动化技术同样也存在安全隐忧。
尽管如此,自动化也是不可避免的。没有人会为了节省几块美元,而不停地用手指来试恒温器的温度。同样,那些依靠手动控制的照明系统也失败了(一些智慧照明生产者希望用他们的传感器数据告诉商店管理者,何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。
可供行为参考的数据
把这个看作是有后续计划的状态。建筑物耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢?因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失,将会超出收益。
对于这一问题相应地产生了两种方法:能够改变系统实时状态的自动化技术、能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能,使能耗降低2到3个百分点。
用户回馈数据
你了解你的顾客的真实想法吗?你也许认为你了解,但是你可能错了。在不久的将来,生产者还能分析从已售出的产品中获取的数据,从而更加了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从经销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。
物联网创造了一个从消费者到生产者的回馈机制,在这里产品生产者可以在保有适度隐私、安全以及抽样来检验产品的实际表现,并鼓励持续的产品改进和创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15