
大数据征信:数据源的“量”与“度”是关键
随着互联网的发展,大数据征信已被越来越多地运用到金融领域,互联网金融平台利用大数据判断用户的信用记录是否良好,从而授予用户相应的信贷额度。传统银行也在加紧布局大数据网络,试图与互联网平台接轨。与传统信用评估模型不同的是,传统的信用评估是根据一个人的借贷历史和还款表现,通过逻辑回归的方式来判断这个人的信用情况,而大数据征信的数据源则十分广泛,电子商务、社交网络和搜索行为等都产生了大量的数据,在如此海量的数据面前,如何把控数据源的“量”与“度”是互联网平台和传统金融机构需要重视并解决的问题。
如今一切信息皆可以成为信用数据,经过分析后用于证明一个人或企业的信用状况。大数据的“量”是指有多少个体在被分析,每一个网上注册账号的个体都可以成为被分析的对象。数据源的“度”是指被分析的个体都有哪些方面能够成为可以参考的数据。有很多人认为数据能够被称为“大数据”需具备两个因素:第一要覆盖面广,用户足够多;第二维度广,要从一个人行为的方方面面反映个体的行为与信用的关系。但是,笔者认为事实并非如此,数据的“量”与“度”也应严格加以控制。
把控大数据的“量”关键在于从大量的数据之中筛选出“有效用户”。无论是在传统金融领域,还是互联网金融领域,给客户做信用评估的前提是必须知道这个人就是他自己。所以,如何证明“你是你”是大数据征信首先要解决的问题。然而现实的情况是:一个人可以同时申请多个账号,多个人在知道账户信息的条件下也可以同时使用一个账号。在这样的情况下数据信息往往有所重叠。因此,数据的体量大并不代表数据更加可靠。
随着越来越多的金融业务互联网化,“反欺诈”面临的挑战也日益增大。“身份认证”的重要性在各项监管文件中反复被强调,而各家机构也在不断探索如何利用新的技术在网上实现身份的核实。金融机构在重视数据量的同时还可运用先进的科学技术手段,如指纹、虹膜、人脸识别等一系列生物识别技术,将大量的无效信息排除在外,同时也能够抵御数据造假所带来的信用风险。
对数据源“度”的有效性进行控制也是金融平台和金融机构需要考虑的问题。社交软件在数据量上有着非常明显的优势,许多社交软件常常从用户行为上分析判断一个人的信用是否良好,这就有可能出现“分析过度”的情况。
在一些大数据征信的文章中,一些案例是这样分析个人行为和信用评分的关系的:经常半夜上网的用户可能被认为没有稳定的工作而降低信用评分,购买大件家具的用户可能提示有固定房屋资产而使其信用评分较高,微博更新频繁的用户可能因为社交活跃而信用评分较高等等。但这些因素并不十分稳定且准确,有些行为可能只是用户的个人习惯,如果过度依赖这些因素将对用户信用的判断产生误差。因此,哪些行为可以成为判断个人信用的标准需要考量。
因此,大数据能够成为金融机构的征信参考标准并不一定要求数据量大、数据的维度多,数据的有效性高、数据更能反映问题才能让征信更加全面、可靠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15