京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的进击:从“DT时代”到“数据产业”
阿里巴巴集团董事局主席马云最早提出“DT时代”这一概念,是在2014年3月在北京举行的一场大数据产业推介会上。在之后的多个场合,马云对“DT时代”做出了系统解读。他认为,人类已经由IT时代进入了DT时代,数据正成为最核心的资源,甚至在未来,数据可能会成为像水、电、石油一样的公共资源。
如果说马云的“DT时代”宣布了IT时代的式微,并给我们描述了大数据洪流汹涌而来的壮观宏大的话,那么近日游族网络董事长、首席执行官林奇提出“数据产业”理念,认为未来只有一个产业就是数据产业,经济形态和商业逻辑将为之重塑,则是从马云的“DT时代”的概念升级,结合当前新的产业市场形势作出的重要判断。
DT时代:汹涌澎湃的大数据浪潮
根据普遍的理解,数据技术时代(Datatechnology),商业社会将以数据为核心和内在驱动力,推动社会发展的不再是对自然资源的利用(如石油、天然气等),而是以云计算、大数据为导向的技术革新,数据资源将会是众多利益集团必争的战略性资源之一,其将影响着农业、工业、第三产业的高层级变革。
马云提出DT时代的时候,当时的大数据产业和应用状况是什么样的呢?
2013年,中国产生的数据总量超过0.8ZB(相当于8亿TB),2倍于2012年,相当于2009年全球的数据总量。从互联网行业看,百度每天响应来自138个国家和地区的数十亿次请求,百度每日新增数据10TB,要处理超过100PB的数据,从浩如烟海的信息中精确抓取约10亿网页,同时索引库还拥有千亿级在线索引能力,以帮助用户完成搜索过程;阿里巴巴掌握的总体数据量为30PB,加上对新浪微博、高德等的投资并购行为,保存的数据量应该在近百PB;腾讯QQ当时拥有8亿用户,4亿移动用户,在数据仓库存储的数据量单机群数量已达到4400台,总存储数据量经压缩处理以后在100PB左右,并且这一数据还在以日新增200TB到300TB,月增加10%的数据量不断增长。其他像360和一些地图、社交、影视娱乐类互联网公司,也拥有PB量级数据储备。在更广阔的电信、金融、保险、电力、石化系统,公共安全、医疗、交通领域,气象、教育、地理、政务等部门,以及商业销售、制造业、农业、物流和流通等领域,更是蕴藏着海量的数据。
从IT时代到DT时代,不仅仅是一个技术的革命,更是一种经济形态和商业生态的革命。马云说:“人类的第一次技术革命诞生的商业形态是工厂,第二次技术革命诞生的商业形态是公司,第一次技术革命是体能的释放,是让人的力量更大,第二次技术革命是对能源的利用,使得人可以走得更遥远,而这一次技术革命是IT时代走向DT时代,是真正的大大的释放。”
林奇也认为,如今我们面临的数据革命,是真正意义上一次伟大的革命。数据正像石油、钢铁一样成为重要原材料,以数据为重要驱动力的数据革命正在到来。谁能抢占数据革命的先机,谁就有望占据新一轮科技和产业革命的制高点。
数据产业:DT时代的产业载体
未来存在于现在,只是不均匀的分布。
从马云提出DT时代到今天,很多看似疯狂的预测已经逐渐实现。有专业分析机构指出,2016年将是令人振奋的一年:智能算法将接替现在由人类来完成的许多业务;我们将看到数据湖服务作为一种服务解决方案出现,帮助企业以最少的工作更多的使用数据;越来越多的行业将开始试用数据区块链技术以改变他们的行业。
2016年大数据发展趋势
一定程度上,云计算是大数据分析技术应用的基础,海量的数据需要更多的计算资源支持,也就是说DT时代的实现,要建立在高度发达的云计算等技术的基础之上,这也是林奇所说的数据产业的基础。在林奇看来,目前中国的商业较量和竞争仍处于较低层的资本竞争恶循环,缺乏技术的创新和理念作为指引。我们身边每天都会产生大量数据,如何将这些数据有效的收集起来,并加以“净化”和有效利用,是DT时代需要解决的首要问题。这一技术的实现需要以强大的IT基建作为支撑,高效、完善的IT构建,也就是数据产业。
林奇认为,掌握了数据,掌握了数据算法,掌握了数据跟商业模式之间关系的这些企业,就能够决定一切经济形态。林奇对此指出,资产、知识的重要性都将让位于数据,谁能决定资产如何配置,决定知识如何在商业领域发挥作用,是更重要的。未来,所有企业都面临短期战略和决策能力失效的挑战,新的组织形态和商业逻辑是未来一系列问题的解决之道。
数据产业:打造DT时代商业生态
林奇提出,我们即将面临一场变革,新兴大数据将成为企业发展的当务之急,而常规技术已经难以应对拍字节级的大规模数据量。这一变化所带来的挑战,是成功的企业在未来发展过程中必须要面对的。只有那些能够运用这些新数据形态的企业,方能打造可持续的重要竞争优势。针对DT时代的商业生态将如何被数据产业重塑,林奇提出了三个方向,一个是全样本数据算法,一个是实时数据分析,还有就是数据即服务的模式。
林奇提出,在不同的商业形态和商业逻辑驱动的商业模式里面,全样本数据算法或数据实时变化的商业形态将会遍布经济的各个领域。
统计学里最基本的一个概念就是,全部样本才能找出规律。为什么能够找出行为规律?一个更深层的概念是人和人是一样的,如果是一个人特例出来,可能很有个性,但当人口样本数量足够大时,就会发现其实每个人都是一模一样的。在大数据时代,无论是商家还是信息的搜集者,会比我们自己更知道你可能会想干什么。现在的数据还没有被真正挖掘,如果真正挖掘的话,通过信用卡消费的记录,可以成功预测未来5年内的情况。
林奇认为,商业智能的价值从后知后觉转向实时分析是一大重要趋势,从慢数据向实时的快数据的转型是机器分析引发的商业智能变革。现在,实时大数据技术已成为改变商业规则的技术了,并将在2016年产生深远的影响,并也讨论了如不接纳这些新技术带来的不良后果,企业是时候采用此技术以保持领先的地位了。通过实施日志数据分析,企业能更快地了解运营和顾客数据,从而实现24/7的持续创新和竞争力提升。林奇就指出,现在很多公司还在谈一年的战略或者三年的战略,再过两三年,可能根本不会有一年的战略,因为一年太久了,战略或者一个具体的业务布局都是按照“月”来变化的。在这样剧烈的变化当中,一定要有一个非常强大的数据支撑系统和商业逻辑来不断进行分析和调整。
IBM公司刚刚收购了Weather公司,而获取后者数据、数据流以及预测分析方案的实质在于着眼于未来。各企业需要将数据流即服务打包成为新的业务模式。林奇表示,未来三到五年,游族将首先把数据驱动集中到的体育产业里面去,其次将把数据能力变成一种公共服务能力,服务公众领域或者服务其他的行业。现在的企业家都面临这样一些问题:用户覆盖和用户之间的转化关系?用户对企业的认可程度和消费能力由什么决定?具体的消费场景在哪里?背后的商业逻辑是什么?这些问题都需要有数据来支撑,游族将围绕三块具体的业务,以智能数据构成业务的底层支撑,形成可以对全球、全产业链输出的公共服务能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15