
如何描述回归模型和回归系数
先简单讲一下一元回归。一元回归,即只涉及一个自变量(如X)。这种模型在社会科学中既很少见(一个常见的例外是时间序列分析中以时间为自变量分析因变量的长期趋势),也很容易报告。一般不需用表格,只须写一句话(如“自变量X的b = ?,std = ?, Beta = ?”)或给一个公式(如“Y = ? + ?b, where std = ?, Beta = ?”)就足够了。如果一项研究中有多个一元回归分析,那么就应该也可以用一个表格来报告(参加?),以便于读者对各模型之间作比较。
接下来专门讲多元回归。由于其涉及诸多参数,有的必须报告、有的酌情而定、有完全不必,为了便于说明,我按SPSS回归分析的输出结果(其它统计软件大同小异),做了一个如何报告回归模型和回归系数的一览表(表一)。如表所示,我将各种参数分成“必须报告”、“建议报告”、“一般不必”和“完全不必”四类。我的分类标准来自于公认的假设检验所涉及的四个方面,即变量之间关系的显著性、强度、方向和形式(详见“解释变量关系时必须考虑的四个问题”一文)。也就是说,每个参数的取舍,应该而且可以由其是否提供了不重复的显著性(即Sig)、强度(B或Beta的值)、方向(B或Beta的符号)和形式(自变量的转换)信息而定的。
表一、如何报告回归模型和回归系数之一览表
注1:因变量预测值的标准误差描述了该模型的精确度(precision),如表二中的因变量是当前年薪,其预测误差为?,即如果用该模型(包括起薪、工龄和性别三个自变量)去预测条件相同的企业中的员工年薪,则可以知道?。这种信息无法从模型的其它参数(如R平方或其修正值、显著水平、各自变量的B或Beta)中得知。
注2:如果因变量和所有自变量都没有缺省值,那么模型的个案数就等于样本数。但变量常有缺省值,这时模型的个案数就会小于样本数、有时两者相差很大(当然是个严重问题),所以一定要报告前者。SPSS并不直接显示该信息,但很容易计算,等于 ANOVA表中的Total df + 1就是了。
注3:B的置信区间,是用来检验B的显著水平的另一工具(如果上、下限之间包含了0,说明B在95%的水平上不显著),以弥补t检验及其Sig值的不足。这是一个经典又有复杂的问题,叫做Null Hypothesis Significance Test (NHST),本文不做详谈。有兴趣的读者可以参见有关网页(R. C. Fraley; D. J. Denis)。SPSS不直接给出B的置信区间,需要在“Statistics”一项中要求添加。如右图所示,SPSS回归分析的输出结果中,内定只显示“Estimates” 和”Model fit”两项(即会产生表一中除了置信区间之外的其它各项参数)。建议加选“Confidence intervals”。
现在用一个实例来演示如何报告回归分析结果。为了便于大家重复这个实例,我使用的数据是SPSS自带的world95.sav。这是联合国教科文组织(或世界银行之类机构)发表的1995年全球109个国家或地区的“国情”数据,其中含有人口、地理、经济、社会、文化等26个指标。我以其中的birth_rt(每1000人的出生率)为因变量,gpd_car(人均国内生成总值)、urban(城市化,即人口中城市人口比例)、literacy(识字率、即人口中能阅读者比例)和calories(每天卡路里摄入量)等四项为自变量。按表一的原则,我将该回归分析的结果报告在表二中:
限于篇幅和本文目的,我不对表二的各参数作解读。但想对表中的有关格式做些补充说明。
如何报告多个回归模型?以上是如何报告一个回归模型的结果。实际上,一项研究(即一篇论文)中往往涉及数个回归模型。有些作者喜欢为每个回归做一个类似表二的回归结果表。这种方法有两个问题:一是占用过多的空间、二是不利于对各模型进行比较。一般说来,应该而且可以将平行(即全部自变量相同)或交集(即部分自变量相同)的回归模型结果放在同一个表内。我们还是用world95数据,再对死亡率和AIDS发病率分别做一个回归,然后将三个模型的结果放在表三:
表三与表二的主要区别在于表二是横向的(每列为同一类参数)、而表三是纵向(每列为同一模型)。表二中横排的六类参数改成竖立的四行(其中的p值被星号代替、置信区间的上下限合在一行),以便读者做横向比较(这是所有定量分析结果的表格制作的一个基本原则)。如果是英文报告,去掉中文后,表三会变得简洁明了很多。
如何报告变量特征和自变量关系 如前所述,因变量和自变量的特征以及自变量之间的相关关系,是需要酌情考虑的辅助信息。鉴于本文已经很长了,我们简单说一下。变量特征主要指
一种值得推荐的方法,是将所有变量的上述特征列在一个表中(表四)、放到论文的附录中去、供有兴趣的读者查阅(类似的技术细节一般都可以放到附录中去)。
最后我们谈谈好雪的另一问题:如何报告自变量共线性的信息。这其实就是自变量相关问题,初步的检验是看各自变量之间的相关矩阵(可以在上图中添加Descriptive Statistics获得),如果其中有相关系数超过0.50,就有必要作正式的共线性检验(即在上图中选取Collinearity Diagnostics),其会针对每个自变量产生两个统计值:Tolerance和VIF (参见详细解释)。前者是该自变量对所有其它自变量做回归的R2之余数(= 1 – R2,如该自变量与其它自变量中的某些或全部高度相关,Tolerance就会很少、甚至趋于0),而VIF则是Tolerance的倒数。两者只须看其中之一就可以了。一般认为,Tolerance < 0.2或VIF > 5,该变量就有较严重的共线性问题了。 如何报告这类问题?通常和值得推荐的做法是将自变量的相关矩阵表放在附录中,而在论文正文中的方法部分(或结果部分),用文字简单描述一下这些相关系数的最大和最小值。如上所述,如果有系数>0.5,则还有接着用文字分别描述一下这些变量的tolerance值。另外,还可以将Tolerance加到表四(作为新的一列)或自变量相关矩阵表(作为最底部新的一行)中去,但没有必要专门替Tolerance和VIF做一个单独的表格。数据分析培训 |
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08