京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的数据交易规则的法律思考
一、 大数据国家战略
现在随着全球数字化、网络宽带化、互联网应用于各行各业,一个大规模的产生、分享和应用数据的大数据时代已经到来。大数据将是下一个创新、竞争、生产力提高的前沿。大国均将大数据提升到国家战略的高度,如美国,2012年3月29日,美国奥巴马政府推出“大数据研究与开发计划”,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国的国土安全,转变教育和学习模式”;英国,英国在大数据方面的战略有开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000万英镑建立世界上首个“开放数据研究所”等;法国,法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展等。
在我国,2015年5月8日总理亲自批示成立贵阳大数据交易所,贵阳成为全国第一家大数据交易所。交易所通过自主开发的电子交易系统面向全球提供7x24 小时全天候数据交易服务,并提供完善的数据确权、数据定价、数据指数开发、数据交易、结算、交付、安全保障、数据资产管理和融资等综合配套服务;2015年7月17日,由上海市经济和信息化委员会指导,上海市云计算产业促进中心主办,新炬网络、51CTO联合承办的首届“中国数据资产管理峰会”。会议中,上海市经济和信息化委员会发布《上海金融行业数据中心安全可控白皮书》,会议围绕数据资产管理、大数据变现、数据治理等热点议题进行,同时也关注在数据收集、运用及交易中,如何确保个人的隐私受到保护、企业的商业秘密不受侵犯、国家的信息安全等问题等。
二、大数据时代带来的法律问题
大数据蕴藏着巨大的潜力和能量,因海量数据的产生、获取、挖掘及整合,展现出巨大的商业价值,且重构很多行业的商业思维和商业模式。在先行者深谙“数据即资产”的道理,并已运用到各行时,大数据时代已并非我们所能选择,它已经到来。
如何给大数据制定规则成为非常现实的问题,即如何评估数据的价值、如何保护数据安全、现代企业如何利用大数据创新转型、以及如何打破数据垄断、个体如何从大数据中获益以及如何保护个体隐私、以及如何实现数据的快速有效交易、如何发挥数据交易所的作用等留下太多的法律空白。本文试图通过数据交易所平台来初步探讨,大数据时代的数据交易规则。
三、 数据交易规则初探
01 政府主导下的数据安全
大数据为国家战略,理应由国家进行主导,而不应交由市场或地方政府主导。国家应及时对大数据的交易规则、数据安全、数据运用、数据共享、个体保护、对外数据交流以及数据管控等制定相应的法律法规。然后随着大数据发展再逐步进行修订,虽然法律具有一定的滞后性,但对于已产生多时的事务,不应任由其发展,可先由部委制定规章制度,待成熟时再上升到法律。
大数据交易可由相应的归口部门进行联合管理,如科技部、公安部、商务部等,但最终是否可形成类似统一由国土安全部对数据进行管理或由其进行过滤后,再商业化运作。同时,加强对大数据相关的知识的教育、培训及宣传工作,以及开始着手各部门的衔接工作。政府应邀请法律界包括法学专家、学者教授及法学院,法院、律协、律师、公检等以及各行业协会代表参与到大数据时代数据交易规则的制定之中,对未来数据时代的交易规则、数据所有权、个体与集合数据的区分及维权、数据安全以及可能产生的纠纷预测等进行相关的研讨。
对于最可能先发生的数据安全问题,可从目前能掌握的如互联网公司非法获取、企业私下交易或共享、政府监控、黑客、用户保护意识欠缺、企业利用格式合同或强势地位收集、企业不重视数据保护或数据保护成本高、企业破产后的数据保护失控、盲目炒作大数据导致管理混乱等方面分别制定相关规定进行相应的保护和约束。
02 数据交易市场的建立及统一
各地数据交易市场相续建立,有地方政府主导的,有地方政府和企业主导等,但没有形成统一的数据交易市场,各数据交易市场各自为政,没有形成统一的交易规则、交易标准、交易定义,没有完善的数据登记,信息披露制度,没有关于国际间数据交流的相关规则等。可以说,目前数据交易市场还仅停留在撮合交易的阶段,或混乱的状态,未实质发挥其作用,未对未来做好充分的准备,任重而道远。
未来数据交易市场应是在国家主导下的统一的交易平台、统一的交易规则,并建立国家资质的数据评估机构,部分职能可交由之后可能产生的行业协会履行,国家再对各行业协会间的数据交流进行必要的监管,建议不妨参照证券交易所的相关经验。
03 企业在规范下进行数据交易
企业是大数据时代最大的获益者,也是受大数据冲击最大者。谁掌握更多的数据谁就掌握未来,而大数据之后的人工智能,也是企业能否引领未来的标杆。但企业是趋利的,而利益是双刃剑,企业在利益确实需要法律和制度的约束。应防止企业在收集、运用、共享数据时对权利的过度滥用,以及防止企业利用法律和制度的空白肆意侵犯个体或国家的隐私及安全,应将国家安全及个体隐私放在非常高的地位,并将其与企业信用进行挂钩,让法律和市场决定企业在大数据时代的生存,以倒逼企业对数据安全的重视。
04 个体对数据交易的适度参与
大数据时代的未来可能超过我们的想象,也可能在科幻电影里已经预言过。通过大数据的收集及分析,所有的痕迹将形成数据。这已经是非可以选择的时代,但可以选择的是如何主动参与到大数据时代中。如某政府官员提出的“数据银行”的概念,数据有价值,个体可主动选择是否对自己数据进行开放以及交易等主动参与的理念。
但作为在大数据面前相对弱势的个体而言,应更多关注数据安全,未来所有个体的资讯将数字化。个体的消费习惯、生活习惯、个人财产、个体特征等个体所有的隐私将无隐私可言。如何掌握数据安全的知识、维护个体的权利、保护个体隐私等将成为个体、企业与国家间进行博弈的新的场所。个体应不惧怕未来,拥抱未来,思索未来,其实大数据时代已经来到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22