
反洗钱的未来一定是大数据分析
中国的银行、金融机构以及准金融机构(以下统称金融机构),在涉及到跨境资金转移的时候,会面临着更加严格的反洗钱以及反资助恐怖分子(以下统称反洗钱)的合规监管。
在继续往下聊合规监管这个问题时,我们似乎有必要区分一下反洗钱不合规与洗钱犯罪的区别,如果一个金融机构明知(甚至应当知道)其所服务的客户有洗钱行为,仍然为其提供便利,进而达到了掩饰、隐瞒非法收入的来源和性质这样一个可以洗钱罪入刑的程度,那么这个金融机构就是在实施犯罪行为而非我们所说的合规问题了。当一个律师在讨论“知道”或者“应当知道”这个问题时,合规问题可能要升级到刑事责任问题了。
传统的反洗钱合规管理工具,比如关联性的数据库管理体系(Relational Database Management System),已经不能够满足现代金融业的反洗钱合规需求,尤其是在一个金融机构涉及到跨境资金转移时,传统的反洗钱合规管理工具更是显得“捉襟见肘”。首先,参与到境外交易的金融机构所涉及的数据量被显著地放大;第二,金融机构面临着多语种的语言转换,从而加大了反洗钱的合规难度;第三,原来看似不是那么重要的一些反洗钱合规需求(比如反资助恐怖分子的合规需求)一旦涉及境外交易就会变得急迫起来;第四,外国监管机构的监管要求可能比国内的监管要求更加严格,导致很多金融机构不适应。解决这些问题的更好的方法,换言之,升级合规管理体系来应对更严格的反洗钱合规义务,比较好的解决方案可能就是大数据分析。
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据商业价值的利用逐渐成为行业人士争相追捧的利润“焦点”。随着大数据时代的来临,大数据分析也应运而生。我们通过本文来看一看金融机构针对反洗钱合规的大数据分析有什么特点。
首先,得花钱投资来收集和储存客户数据
收集并储存客户数据当然会有成本支出。为了满足监管需求,金融机构必须要收集并储存能够满足监管需求的合规数据,但是这些合规数据对于大数据分析来说可能还不够,一个金融机构应当考虑进一步细化它能从客户那里所收集的数据-——有的金融机构已经考虑在收集自然人客户的声音,作为声纹数据收集保存起来。
进一步细化客户的数据貌似吃力不讨好,其实,这些金融机构所收集到的数据也是资产,可以让金融机构朝着定制化的方向更加精准地研发以及提升服务产品来匹配客户的需求,从而起到“一石二鸟”的作用。
其次,数据仪表化
数据仪表化是指把那些与合规管理相关的数据通过人性化的、一看就懂的仪表盘的方式予以展示,从而实现人机对话。
第三,数据去重(Deduplication)
数据会重复,所以要去重,从而能够节省数据储存空间及费用,并提高大数据分析的实时性、有效性。
数据去重对于反洗钱来说还有一个非常实际的效用,那就是能够发现一个涉嫌洗钱的公司或者个人是否开了多个账户从而方便洗钱。
第四,数据来自于多个渠道
大数据分析除了我们前面所说的数据量大之外,还体现在数据来源广泛。就一个客户而言,如果针对它、他或她的数据来自于多个渠道,且这些渠道本身的差异化巨大,那么其分析和挖掘出来的结果才会形成这个客户的全息图景,从而更加真实并具有前瞻性。
为了让数据量足够大,一个金融机构也许还得向其他第三方去调取数据。所以应当有串联系统,把各个不同的数据库的数据串联起来进行分析。
最后,向人工智能演变
人工智能,相对于一个数据分析平台而言,具有自我学习、纠错、成长的功能。大数据分析再加上日益现代化的分析技术就会使得大数据分析朝着人工智能的方向发展,从而使得大数据分析能够更加精准地管控洗钱风险。
总之,大数据分析对于一个金融机构的反洗钱合规而言是“最佳实践”(Best practice),其实对于一些其他银行及金融机构的业务(比如信贷风控)而言也是如此。这个最佳实践还可以应用到其他行业的其他应用(比如任何行业的客户营销、贿赂风险与欺诈风险防范)。从这个角度讲,大数据分析岂止是反洗钱的未来?它一定也是银行业甚至其他行业的未来!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29