
一张图读懂数据分析
前两天看到一张图,很好的诠释了从数据到数据分析的过程,今天分享给大家。
这四个步骤直译过来就是:数据-信息-展示-知识。不过图中的信息量远不止这八个字这么简单。可以说这张图体现了数据分析精髓,读透了就懂数据分析了。
——————-| 壹 |——————-
现实比图1更残酷,往往鸡蛋里面是混着蛋壳滴!数据源质量参差不齐,各种垃圾数据,各种无效数据。很多初级分析人员就用这样的数据开始劳作了。难道你们不知道还有一种工作叫数据清洗或数据整理么?建立在垃圾数据基础上的分析能是分析么?
有次见一个小表妹在分析VIP顾客的平均年龄(备注:时尚女装品牌),她用所有VIP会员年龄总和除以会员总数就得到了平均年龄。so easy,在excel表格里面几秒钟就能搞定。我想这样的平均年龄她一定会写到会员月度报告中去吧,领导们也会相信这是真的。正好想和这个妹妹聊会儿天,于是对她说你能用透视表筛选一下看看年龄段在60岁以上15岁以下的会员有多少吗?表妹不会透视表的年龄分段功能,于是我又手把手的教会了她。
该品牌的目标顾客年龄是25-35岁,不看不知道一看吓一跳,居然有6.9%的会员年龄是60+或15-(想想一个80岁的老太太会拉高不少平均年龄值滴)。这些就是会员年龄的垃圾数据,出现这种情况多半是店铺数据录入的时候没把好关,当然这个企业本身也不重视这些基础数据的收集。
——————-| 贰 |——————-
有些人的数据分析终止于图中的第二步,分析结果只是信息的堆积。无数次看见下属给领导的数据分析报告,各种数据,各种表格,密密麻麻的好几张sheet。领导要的结论呢?
“领导你自己看”(下属在心理面这样说)。
这种只有数据没有结论的数据分析报告充斥着我们的日常工作,受害者都是企业的管理者。
分析的时候将有价值的数据整合成信息只是数据分析的一个步骤,只罗列数据不叫分析,那个只是数据的搬运工。你们想做一辈子的搬运工吗?
将有价值的数据整合成有价值的信息是这个步骤的核心内容。
——————-| 叁 |——————-
有些人的数据分析终止于图中的第三步(展示),数据展现形式大于内容,空有漂亮的图表而无实质内容。这里面分成两类,一类是追求漂亮型,每张图表都有漂亮的配色,高大上的自定义数据图,把数据打扮成一个个花枝招展的春姑娘。
第二类是朴素型,有些人做了一辈子的图表只用过三种图:曲线图,饼图,柱状图(我把它们叫三俗图)。其实excel中的图表有很多,条形图、雷达图,股价图,堆积图等,还有变异的漏斗图,双轴图等等。可供选择的太多了,这种人就是懒!
数据展示要讲逻辑,图表必须要用最简单的逻辑把结论告诉受众,而不是简单的做成图就完了。时间序列,优先顺序,重要程度等都是图表可以利用的逻辑。
考大家一下,下面这张图你能发现几个错误或不符合逻辑的地方?
如果能找到3个以上问题的同学可以毕业了!大家可以在文章最后以评论的方式说出你找到图表的逻辑问题有哪些?
俗话说:千言万语不如一张图,但是好的图表才会自己说话!
——————-| 肆 |——————-
亮点总是在最后面,正如第四张图描述的一样,好的数据分析成果大部分会被受众吸收,转化成他们的知识(盘子里面只会剩下一点点面包屑)。没有前三个步骤的铺垫,转化的可能就不是知识而是糟粕了。
数据分析的目的是什么?你真的认真思索过这个问题吗?没有的请马上面壁三分钟然后再往下看。
1、认清事实
2、找出规律
3、预测未来
4、洞悉关系
这是我总结的数据分析的四大主要目的,无论是哪一个目的,最终你都是需要将分析成果让受众吸收。受众可以是别人,也可以是自己。数据分析人员的日常工作大部分是在认清事实和找出规律,而预测未来和洞悉关系占的比重很少。
我们在做数据分析报告的时候,一定要有价值的结论,并且准确无误的将结论传递给受众,否则大家都是在浪费时间。记住上面做汉堡的这张图,你不仅仅是为了汉堡好看,而是让对方吃进肚子里去才是目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15