京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一张图读懂数据分析
前两天看到一张图,很好的诠释了从数据到数据分析的过程,今天分享给大家。
这四个步骤直译过来就是:数据-信息-展示-知识。不过图中的信息量远不止这八个字这么简单。可以说这张图体现了数据分析精髓,读透了就懂数据分析了。
——————-| 壹 |——————-
现实比图1更残酷,往往鸡蛋里面是混着蛋壳滴!数据源质量参差不齐,各种垃圾数据,各种无效数据。很多初级分析人员就用这样的数据开始劳作了。难道你们不知道还有一种工作叫数据清洗或数据整理么?建立在垃圾数据基础上的分析能是分析么?
有次见一个小表妹在分析VIP顾客的平均年龄(备注:时尚女装品牌),她用所有VIP会员年龄总和除以会员总数就得到了平均年龄。so easy,在excel表格里面几秒钟就能搞定。我想这样的平均年龄她一定会写到会员月度报告中去吧,领导们也会相信这是真的。正好想和这个妹妹聊会儿天,于是对她说你能用透视表筛选一下看看年龄段在60岁以上15岁以下的会员有多少吗?表妹不会透视表的年龄分段功能,于是我又手把手的教会了她。
该品牌的目标顾客年龄是25-35岁,不看不知道一看吓一跳,居然有6.9%的会员年龄是60+或15-(想想一个80岁的老太太会拉高不少平均年龄值滴)。这些就是会员年龄的垃圾数据,出现这种情况多半是店铺数据录入的时候没把好关,当然这个企业本身也不重视这些基础数据的收集。
——————-| 贰 |——————-
有些人的数据分析终止于图中的第二步,分析结果只是信息的堆积。无数次看见下属给领导的数据分析报告,各种数据,各种表格,密密麻麻的好几张sheet。领导要的结论呢?
“领导你自己看”(下属在心理面这样说)。
这种只有数据没有结论的数据分析报告充斥着我们的日常工作,受害者都是企业的管理者。
分析的时候将有价值的数据整合成信息只是数据分析的一个步骤,只罗列数据不叫分析,那个只是数据的搬运工。你们想做一辈子的搬运工吗?
将有价值的数据整合成有价值的信息是这个步骤的核心内容。
——————-| 叁 |——————-
有些人的数据分析终止于图中的第三步(展示),数据展现形式大于内容,空有漂亮的图表而无实质内容。这里面分成两类,一类是追求漂亮型,每张图表都有漂亮的配色,高大上的自定义数据图,把数据打扮成一个个花枝招展的春姑娘。
第二类是朴素型,有些人做了一辈子的图表只用过三种图:曲线图,饼图,柱状图(我把它们叫三俗图)。其实excel中的图表有很多,条形图、雷达图,股价图,堆积图等,还有变异的漏斗图,双轴图等等。可供选择的太多了,这种人就是懒!
数据展示要讲逻辑,图表必须要用最简单的逻辑把结论告诉受众,而不是简单的做成图就完了。时间序列,优先顺序,重要程度等都是图表可以利用的逻辑。
考大家一下,下面这张图你能发现几个错误或不符合逻辑的地方?
如果能找到3个以上问题的同学可以毕业了!大家可以在文章最后以评论的方式说出你找到图表的逻辑问题有哪些?
俗话说:千言万语不如一张图,但是好的图表才会自己说话!
——————-| 肆 |——————-
亮点总是在最后面,正如第四张图描述的一样,好的数据分析成果大部分会被受众吸收,转化成他们的知识(盘子里面只会剩下一点点面包屑)。没有前三个步骤的铺垫,转化的可能就不是知识而是糟粕了。
数据分析的目的是什么?你真的认真思索过这个问题吗?没有的请马上面壁三分钟然后再往下看。
1、认清事实
2、找出规律
3、预测未来
4、洞悉关系
这是我总结的数据分析的四大主要目的,无论是哪一个目的,最终你都是需要将分析成果让受众吸收。受众可以是别人,也可以是自己。数据分析人员的日常工作大部分是在认清事实和找出规律,而预测未来和洞悉关系占的比重很少。
我们在做数据分析报告的时候,一定要有价值的结论,并且准确无误的将结论传递给受众,否则大家都是在浪费时间。记住上面做汉堡的这张图,你不仅仅是为了汉堡好看,而是让对方吃进肚子里去才是目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05