京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用数据挖掘技术的优势,通过建立预测分析模型,可以有效提高企业财务分析和预测能力。
(一)投资决策分析能力
投资决策分析是一个复杂的过程,不仅要考虑投资项目的内在环境,还要考虑企业所处的各种外在环境;不仅要考虑企业的投资回报率、回收期,还要考虑企业在营运过程中的现金流情况。要对一个投资项目的可行性进行分析,必须要借助大量的统计工具和模型。而数据挖掘技术可以及时动态的提供行业基本状况以及投资环境等大量的数据资料,通过这些数据资料建立起来的模型,可以挖掘出对企业投资决策有用的信息,保证投资决策的正确性和有效性。
(二)筹资决策分析能力
筹集资金量的多少、筹资渠道、筹资方式、筹资期限都是企业解决筹资过程中的重要环节。为了更好更高效地筹集资金,企业必须分析企业所处的各种政治、法律、金融及技术等环境,了解企业所需筹集资金的用途及性质,比较各渠道筹集资金的成本及风险。企业利用数据挖掘技术,运用回归分析模型预测企业所需筹集资金的量,还可以利用关联模型等对各种渠道及方式进行分析,挖掘最适合企业筹集资金的渠道、方式和期限,力争以最小的成本及风险筹集到企业所需要的资金。
(三)预测分析能力
预测一般建立在大量的历史数据和适当的模式基础上,数据挖掘能自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确地预测企业各项指标,为决策提供依据。
(四)产品销售分析能力
产品销售是企业最终实现利益回归的方式,但不同产品可能带来不同收益。企业要不断发展,必须实时分析不同产品在整个市场的趋势。对那些只能给企业带来短期收益的产品,不盲目扩大产品生产线,不积压过多原材料,不要过多采取赊销方式;而对那些具有长远市场潜力的产品,不仅要多培养长期客户群,建立客户的信息数据库;同时要通过数据挖掘技术的相关模型,如趋势分析等模型了解该产品前期原材料等的预期市场趋势,以加强材料库存的管理,减少由于产品成本的变化给企业带来的损失。
(五)客户分析能力
客户关系管理是提升企业竞争优势的有力武器。企业通过对客户数据进行挖掘,进行关联分析客户对企业的价值贡献、忠诚度、流失等信息,掌握客户的行为规律,并根据这些规律进行分类,找出最有价值和具有潜力的客户群,对这些重要客户要紧密追踪,要多角度、全方位地尽量为他们提供所需要的服务,减少潜在长期客户的流失。另外,企业通过数据库中客户数据的分析,能挖掘出客户真实状况以判断是否进行赊销,降低企业自身的风险。
(六)财务风险分析能力
筹资投资过程中的金融风险、产品销售过程中坏账的风险,经营过程中行业政策改变的风险,都是企业在运营过程中现实存在的。如果不注意对这些风险的分析,任何阶段小小的风险都可能使企业处于危险的境地。企业利用数据挖掘技术,根据各个阶段不同特点,建立不同的风险预测模型,可以提前对风险进行预测,加强各个阶段的风险防范和控制。
(一)确定财务分析的对象
定义财务分析的对象,根据财务分析的目的选择合适的分析模型,采用相应的数据挖掘方法。
(二)数据选取、收集
数据选取的目的是确定目标数据,根据用户的需要从原始数据库中选取相关数据或样本。数据收集是数据挖掘的前提,数据可以来自于现有的事务处理系统,也可以从数据仓库中得到。
(三)数据整理
数据整理是对选出的数据进行再处理,检查数据的完整性及一致性,消除噪声及与数据挖掘无关的冗余数据,根据时间序列和已知的变化情况,利用统计等方法填充丢失的数据。数据整理包括以下内容:
1.数据选择。搜索所有与财务分析对象有关的内部和外部数据信息,根据财务分析的目的从中选择出适用于数据挖掘的数据。
容理解的基础上,寻找依赖于发现目标的表达数据的有用特征,以缩减数据规模,从而在尽可能保持数据原貌的前提下最大限度地精简数据量。
3.数据转换。选取合适的知识发现算法,选择合适的模型和参数,建立分析模型,并将数据转换成为该分析模型。
(四)数据挖掘
对所得到的经过转换的数据进行挖掘。除了选择、完善合适的挖掘算法外,其余一切工作都能自动地完成。
(五)模式评估
数据挖掘的结果有些是有实际意义的,而有些是没有实际意义的,或是与实际情况相违背的,这就需要进行评估。评估可以根据用户多年的经验,对在数据挖掘步骤中发现的模式进行评估,也可以直接用实际数据来验证模型的正确性,进而调整挖掘模型,再次进行挖掘。
(六)分析决策
数据挖掘的最终目的是辅助决策。将发现的知识以用户能理解的方式呈现给用户,决策者可以根据数据挖掘的结果,结合实际情况,将分析所得到的知识集成到财务分析系统中,做出最终决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21