京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss:syntax对重复观测值的处理
很早的时候,大家在SPSS中处理单个变量的重复值通常都是这样的做法,首先将要处理的数据进行排序,然后将其复制后在从新变量的第二行开始粘贴,得到了两个观察量错开一个位置的变量 ,然后对这两个变量进行相减,最后挑选或删除为零的选项以获得完全无重复的数据。这样的做起来不算困难,但处理2个或2个以上变量的重复值就显得有点乏力了。下面就芒果的例子利用SPSS syntax对重复观测值的处理进行相关探讨,简要数据如下:
问题1.找出上表中zkzh相同且itemid也相同的所有记录。
关于sort cases/match files/filter等命令见下面小贴士的说明,首先看看数据处理结果:
问题2. 如何快速的分离出被筛选的变量?
还是利用上面的例子,我们利用dataset copy命令将被筛选出的观测值快速的筛选出来,形成一个新的数据集。
#1 Filter off.
#2 Dataset copy shaixuanji.
#3 DATASET ACTIVATE shaixuanji.
#4 SELECT IF thesame=0.
#5 EXECUTE .
代码解析:
第1行命令利用filter off命令清除上面的筛选效果。
第2行命令式将当前数据集复制到新的数据集shaixuanji中。
第3-4行命令是激活数据集shaixuanji,并且选择thesame变量中值为0的观测值(其他的默认删除)。
第5行命令是即时运算命令。
效果如下:
如果不想要这么多的变量,可以使用save outfile.../keep(drop)命令选择自己需要的变量。
问题3.有时候我们并不知道如何筛选重复值,而是事先观察比较重复值的相关特性,然后做下一步的处理,那么如何选择输出重复值的相关信息呢?
这里还是利用最初的数据进行说明,由于目的不同,这里筛选查找重复观测值的方式也不同。问题1中采用的是match files命令来处理重复值,这里换一种方法,利用aggregate分类汇总命令来计量重复值,进而作进一步的汇总说明,具体代码如下:
#1 AGGREGATE OUTFILE = * MODE = ADDVARIABLES
#2 /BREAK = zkzh itemid
#3 /sameCount = N.
#4 SORT CASES BY sameCount (D).
#5 COMPUTE filtervar=(sameCount > 1).
#6 FILTER BY filtervar.
#7 SUMMARIZE
#8 /TABLES=zkzh itemid samecount
#9 /FORMAT=LIST NOCASENUM TOTAL
#10 /TITLE='重复值概述'
#11 /CELLS=COUNT.
代码解析:
第1-3行命令利用aggregate命令在当前数据集中新增一个变量samecount记录分组变量zkzh和itemid相同观测值的数目,类似于GUI操作中的data--aggregate.
第4行命令对变量samecount进行降序排列.
第5行命令计算新变量filtervar,对其满足条件samecount>1赋值1,否则赋值0.
第6行命令对数据集按变量filtercar进行筛选,filtervar变量中值为0或缺失的都将被过滤.
第7-11行是制表命令,等同于GUI菜单操作中的analyze--reports--case summarises,第8行选择表中的计量变量,这里选择了zkzh等3个变量,第9-10行则是对表格的格式及标题进行设置,第11行是相关统计量的选择,这里选择的是count,除此之外还可以选择max\range\sum等其他统计量。
输出结果:
小贴士:
Filter
Filter命令是用来从当前数据集中排除观测值而不删除观测值的命令。当变量的观测值为0或缺失时这些观测值将被过滤掉(SPSS中的表现效果为)。Filter相关命令规则:
1)只允许指定一个数值变量(该变量可以是原始变量或数据转换变量)
2)使用filter off后,恢复过滤掉的观测值
3)当filter命令不包含子命令时,将按filter off命令进行等效处理,等SPSS output窗口会提示警告信息
4)Filter可以用在syntax语句的任何位置,和select if命令不同的是,filter命令在input program语句中也有同样的效果。需要注意的是这里的筛选变量需要时数据转换变量。
其他说明:
1)filter命令并没有改变当前数据集;
2)filter命令并没有提供观测值的选择过滤标准,系统缺失和用户自定义缺失值,都将被过滤掉
3)如果filter的变量名改变了,筛选效果仍然有效;但是筛选变量如果转换为字符变量时,filter命令效果将会消失
4)如果当前数据集被match files,add files或update等命令更改后,过滤变量未发生变化,filter命令仍然有效
5)如果当前数据集被一个新的数据集代替,filter命令将关闭
MATCH FILES
Match files命令可合并2个或2个以上含有相同观测值但不同变量的数据文件。例如,合并销售人员的信息和销售业绩,有点类似于数据库中的select操作。最多可以合并50个数据文件。例如,合并数据part1,part2及当前数据及可以用下面的代码,如果怕数据合并错误,可以先对这些数据集进行排序,然后利用by子命令根据排序变量进行合并,还可以利用last或first子命令赋值1说明重复值位置。
MATCH FILES FILE='/data/part1.sav'
/FILE='/data/part2.sav'
/FILE=*.
SORT Cases
Sort cases基于一个或多个变量进行排序,可以是升序(a)或降序(d),也可以是升序降序的组合。(默认为升序),Sort cases相关说明:
1)关键词by是可选的
2)By排序的变量可以是数字变量或字符变量,但不能是系统变量或临时变量(#various)
3)Sort cases是按变量顺序进行排序的,优先排序第一变量
4)Sort cases指定排序变量不能超过64个
例如:SORT CASES BY var1(A) var2(D).
*首先对变量1进行升序排列,然后再此基础上按变量2进行降序排列.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12