
2016年大数据技术发展趋势概述
对大规模数据集进行分析能够帮助我们掌握隐藏模式、客户偏好、未知关联性、市场趋势以及其它极具价值的业务信息。在此基础之上,企业能够实现成本削减、促进决策制定并提供更多有针对性的产品与服务。而在今天的文章中,我们将共享了解2016年内出现的几项大数据技术发展趋势。
对大规模数据集进行分析能够帮助我们掌握隐藏模式、客户偏好、未知关联性、市场趋势以及其它极具价值的业务信息。在此基础之上,企业能够实现成本削减、促进决策制定并提供更多有针对性的产品与服务。而在今天的文章中,我们将共享了解2016年内出现的几项大数据技术发展趋势。
Apache Spark
Apache Spark是一套卓越的开源处理引擎,专门面向复杂分析、高速处理与易用性需求而打造。蕻为程序员们提供立足于数据结构之上的应用程序编程接口,而这套数据结构则被称为弹性分布式数据集,其属于以容错方式分布于设备集群之上的多套只读数据集。
弹性分布式数据集(简称RDD)有助于实现交互式算法。此算法会多次访问该数据集,从而实现交互式或者说明性数据分析。利用这类交互式算法作为机器学习系统的训练机制正是Apache Spark项目的开发初衷。在它的帮助下,样本数据分析已经成为一项相当简单的工作。
下面让我们看看Apache Spark在大数据领域脱颖而出的重要原因。
处理速度极快
在大数据处理工作中,速度一直非常重要。Apache Spark能够在内存内将Hadoop集群应用的运行速度提升100倍,磁盘之上亦能够提升10倍。Spark通过减少对磁盘的读取或写入量实现这一效果。中间处理数据被存储在内存当中。
易于使用且支持多种语言
Sparks允许大家快速利用Java、Scala甚至Python为其编写应用。另外,Spark本身还内置有80多项高级操作指令。
支持复杂分析
Apache Sparks支持复杂分析、数据流以及SQL查询。另外,用户也可以将各项功能全部并入同一工作流程之内。
实时流处理
Apache Sparks能够轻松处理实时数据流。它可在实时操作数据的同时,使用Spark Streaming。
Sparks能够独立执行,亦可结合Hadoop 2的YARN集群管理器并读取Hadoop数据。这意味着Spark适用于迁移任何现有纯Hadoop应用。
基于Hadoop的多核心服务器
企业正逐步由昂贵的大型机与企业数据仓库平台转向Hadoop多核心服务器。Hadoop是一套基于Java的开源编程框架,能够在分布式计算环境下支持对超大规模数据集的处理与存储。
低成本存储与数据归档
Hadoop可用于对点击流、交易、科学、机器、社交媒体以及传感器等生成的数据进行存储与整合,这主要是受到商用硬件成本不断降低的推动。低成本存储方案使我们能够暂时保留似乎并不重要的信息,以待稍后进行分析。
以沙箱方式进行发现与分析
Hadoop能够处理各种不同类型与格式的数据,从而运行多种分析算法。Hadoop上的大数据分析机制帮助企业实现高效运营、机遇发现并借此提升自身竞争优势。在这方面,沙箱方案则可显著降低实现成本。
利用数据湖,数据能够以其原始或者精确格式实现存储。如此一来,数据科学家与分析师将能够利用原始或者精确数据视图进行发现与分析工作。
补充性数据仓库
Hadoop与数据仓库环境并行存在,而部分数据集亦可从数据仓库中转移至Hadoop或者其它能够直接为Hadoop所用的数据平台之上。由于各企业的实际业务目标不同,因此其采取的数据存储及处理模式亦有所区别。
物联网与Hadoop
物联网的核心在于庞大数据流。Hadoop常被用于处理此类数据的存储工作。巨大的存储与处理能力使得Hadoop被作为沙箱环境,从而发现并监控潜在模式以建立规范性指令。
预测分析与物联网
利用数据、统计算法与机器学习技术,我们有可能根据历史数据判断未来的事态走向,这正是预测分析的基本思路。预测分析可用于进行欺诈活动检测、营销优化、运营改进以及风险控制等工作。
物联网是指能够以开/关控制方式接入互联网的小型装置。物联网市场的整体规模正在快速增长,预计未来20年当中物联网能够为全球GDP贡献10到15万亿美元。
2016年年内,大数据的上述发展趋势已经基本明确,且通过一系列实践证明了其在降低风险、改进运营以及检测欺诈方面的良好功效。而将实时数据源与大规模历史数据相结合以建立起的洞察能力,则正是预测分析方案的实现基础。毫无疑问,Spark、Hadoop以及物联网将引领新的大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10