京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网金融做好大数据风控还差什么
无论你接不接受,中国金融业的大数据时代正呼啸而来,并激起了巨大的想象空间。而大数据之于互联网金融行业,是蜜糖,更是挑战。
大数据风控在互金行业的应用现状
大数据对于金融行业最大的价值体现在风控上。
前几年,我们经常见到这种景象:一些刚开张没多久的互联网金融企业,对外宣传中总要加上一句自己是运用大数据技术进行风控的,仿佛不和“大数据”沾上点关系,都不好意思说自己是做互联网金融的了。
而现实总是骨感。以P2P网贷行业为例,据零壹财经《中国P2P网贷行业2016年5月月报》显示,截至2016年5月31日,P2P行业的问题平台总计2471家,占平台总数的比例高达54.1%,这其中除了主动退出和自融欺诈的平台外,有不少平台倒闭是因为风控不过关。
在国内,金融机构对大数据的应用还基本处于起步阶段,一是因为我国的征信体系不完善;二是国内的用户数据普遍存在获取困难和不精准问题,而传统金融机构缺乏对自身数据的分析处理能力。
目前互联网金融在大数据风控上的尝试主要有两种方式,一是阿里、京东及其他大型线上平台通过自身积累的数据挖掘,自建信用评级发放金融产品;二是众多中小互联网金融公司通过贡献数据给第三方征信机构,再分享征信数据,这也是目前众多P2P平台采用大数据风控的主要方式。
而大部分互金平台自身所积累的数据,由于体量有限,最多只能称为随机性样本,不具代表性。此外,大部分平台由于缺乏对数据的挖掘建模和分析评估能力,无法得出科学有效的风险计量模型,形成风控手段。
大数据风控在互金行业的机遇与挑战
与国外金融行业相比,中国最大的弱势在于征信体系的不完善。目前央行征信系统覆盖了8亿人,但只有3亿左右的人是有信贷记录的,剩下的都是信用空白人群。但也正是因为这些数量庞大的白户,中国基于大数据风控的土壤相比国外更成熟,更具发展空间。
截至2015年年底,中国网民规模达到6.88亿,互联网的高效性和爆发性使我们能以较低的成本、较短的时间积累大量的用户数据,为分析建模提供足够的样本量。
在这过程中,互联网金融企业面临的挑战主要有两个,一是数据的不断积累与沉淀;二是高端数据人才的挖掘与培养。
为何要不断积累与沉淀数据?有的企业掌握了一定量的客户信息数据,就以为掌握了大数据,其实大数据风控的核心不在于数据本身,而在于通过足量的数据分析得到的风控模型。只有不断纳入足够的变量,得出的模型才具备充分代表性,不容易出现问题。因此,互金平台在目前的阶段中,要尽量抓取不同层面的数据,在这个基础上进行综合判断,减少出现误差的可能。
除了足量的数据积累外,把这些数据整合起来,形成核心有效价值最不可或缺的是人才,目前在国内金融行业中,擅长风控数据建模和数据研发的人才少之又少,挖掘和培养具备业务视角和技术能力的复合型人才成为互联网金融企业的崛起之光。相信随着行业的成熟,会有越来越多的高端数据人才加入这个行业,共同实现互联网金融的大数据掘金梦想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08