京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新媒体行业如何利用大数据掌握受众趣味
数字信息爆炸时代,我们生活的每时每刻都在产生着数据信息。沃尔玛通过对过去一年原始交易数字的详细分析将尿布与啤酒一起销售,取得赫然的业绩;Google通过分析美国人最频繁检索的词汇,将之与季节性流感传播时期的数据进行比较,从而建立了一个特定的数学模型,最终成功预测了冬季流感的易发地区。在电信、金融等行业已经达到“数据就是业务”的地步。这不由让人联想,大数据能为媒体带来什么?
1 揭开大数据的神秘面纱
大数据(Big Data)是指以多元形式、自许多来源搜集而来的庞大数据组,也有一种说法称大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。
大数据的特点就是“庞大”、“海量”。这是因为人类每时每刻的活动都伴随着数据信息的产生,数据集合的范围已经从兆字节(MB)到吉字节(GB)再到太字节(TB),甚至还有拍字节(PB)、艾字节(EB)和泽字节(ZB)的计数单位出现。
大数据可能取自社交网络、商务和视频网站、顾客来访纪录,还有许多其他来源。用户电脑浏览记录、手机通信记录、网页浏览习惯、微博使用习惯、手机GPS定位跟踪记录等这些行为都会被作为数据记录下来。
2 大数据时代下的媒体思维转变
大数据在物理学、生物学、环境生态学、医药学等科学领域已有广泛应用,对军事、通讯、金融等行业也有广泛的影响。随着互联网的风行,大数据对互联网的影响日渐加深,而对于依托互联网发展起来的新媒体行业也初现端倪。
大数据统计技术发展到今天,生产、存储、积累的数据量之大,已经超越了一般人所能想象的范围。“以铜为镜,可正衣冠;以古为鉴,可知兴替”,而以“数据”为镜不仅能掌握历史信息,还能更好地预测未来。
①利用大数据掌握受众趣味
美剧《纸牌屋》的成功让人们将焦点聚集在数据分析对媒体的应用层面。这部收视火爆的美剧出自影片租赁提供商Netflix。Netflix对2700万名美国订阅用户、3300万名全球订阅用户的评分、观看记录、好友推荐等信息进行深度挖掘,从而找出用户喜欢的视频风格、内容风格、导演和演员,利用这些关键信息确定了观众喜爱的体裁、演员、导演。
②注重个体用户体验
因为大数据技术的支持,促进了各类终端、平台的发展,为用户带来了多样化的信息获取渠道,并使用户在意见的表达和信息的发布中占据一席之地,终端和平台为了吸引用户,会根据用户的搜索记录,得出每个用户的爱好、兴趣,为他们推荐适合自己的社群。
③实现多屏互动
随着互联网的快速升级和智能终端的发展,用户收看渠道从单一媒体到多终端整合。全媒体、全渠道、全终端,已成为媒体发展自身的必然趋势。目前,较多电台将自己的品牌节目,放到自己的PC、移动互联网、IPTV和OTT等平台进行播放,并且开设微博、微信公众平台,通过与观众的亲密互动,把握他们的观看需求。
3 大数据对新媒体的作用
大数据的云计算能力可以为手机APP、微博、微信等移动终端提供大数据服务,成为媒体融合的底层平台基础,微博的推荐用户、搜索引擎的相似关注都是在大数据的支持下实现的,新媒体的大数据系统需要具备信息采集的功能, 根据用途的不同,设计系统的日信息处理量,对信息进行过滤、去重、相似性聚类、情感分析、文摘、自动分类等处理。
①手机APP
大数据可以使APP应用实现精准推送,并借助APP互动的环境,对用户爱好进行挖掘。例如电商会透过不同的生活服务APP,对每位消费者产生的支付数据进行估量和测评,然后量体裁衣的对自身的商品实施推送。无论是购物类APP、团购类APP还是咨询类APP,用户规模越大,数据采集时间越久,对用户的需求分析就越精确。
②微信
微信的公众账号管理平台可以实时统计每个自定义菜单的点击量、分析每次推送消息的点击率,并自动进行客户分层。这意味着每一个公众账号都可以通过微信平台的数据收集与分析功能了解到哪一类的信息更易于被订阅用户接受、哪一些订阅用户对产品的关注度高,从而为不同的客户推送个性化的服务内容,实现有效的信息推送。
有人预言未来的几十年,数据将会成为人类最宝贵的财产之一,大数据对新媒体的作用是否能持续发酵,我们都将期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21