
大数据使棉花行业供给侧改革成为可能
国储棉轮出已经进行了一月有余,热度不断攀升,棉花价格居高不下,截止到目前,除5月30日单日成交率不足90%以外,其余单日成交率均维持在97%以上,最高成交价格更是高达14350元/吨。然而,今年初,棉花市场并非如此景象:市面上很多棉花都无人问津,不少业内人士表示行情不好,有时亏本都做不到生意。现如今,大家纷纷猜测,难道是国储棉激活了整个市场?可是回忆去年,国储棉拍卖却远不如现在这般红火:累计成交量(6万多吨)仅占轮出资源总量(100多万吨)的6.34%左右,成交结果十分惨淡。同样是棉花市场,同样是国储棉,前后反差竟然如此之大,很多人不禁担忧,行情波动真的没法预测、没法控制吗?再者,近来国储问题频发:越来越多的贸易商参与竞拍,未来棉花价格走向难以预测;拍储成交后出库速度太慢,违规收费时有发生。棉花交易市场已经呈现紧张氛围,一定程度上也引起了部分纺企的恐慌心理。
棉花市场行情波动如此之大,问题究竟在哪?笔者认为,主要原因还在于目前的棉花交易大体采用比较传统的经营模式:成交总是建立在较为主观的判断基础之上,资源信息也无法大范围流通。加上市场本身波动较大,这种方式显然已经无法满足当下的消费需求。从交易商的角度看,交易双方需要耗费大量的时间和成本来找货和谈判,运输过程中还要承担很大的风险,而且选择范围非常有限。从市场的角度看,这其实造成了整个行业内人员、资本、时间以及物料等资源的浪费:每一次交易都需要重复冗长的流程;各交易方获得的资源、经验都无法在整个行业内进行充分的传播与共享;交易所需的时间和成本总会被挤出一部分用于风险控制,而且往往并没有多大效果。说到底,还是因为交易过程中存在种种不确定性:无法实时了解市场行情,无法随时获取资源信息,无法尽快掌握合作对象及其货物信息。如果棉花行业也有专业的大数据分析,并积极推进供给侧改革,信息不透明、资源不共享等问题将得到大幅度改善。
以互联网为基础的大数据,是一个行业资源信息的总和,来源于无数渠道,提炼为有效信息,而后才能为行业所用。其最核心的价值在于能够快速地、对海量数据进行存储和分析。相比现有的其他技术,大数据“廉价、迅速、优化”三方面的综合优势是最明显的。因此,无论是对于互联网公司,还是整个行业,快速掌握大数据技术已经成了决胜性战略。大数据是技术,供给侧改革是经营模式。当下中国经济所面临的困境,仅从需求侧入手已经很难有所突破,因此供给侧和需求侧相结合才是结构性改革。提高供给质量,优化资源配置,扩大有效供给,让供给侧与需求侧相互适应,从而提高全要素生产率,是所有行业都应该追求的终极目标。如果棉花行业也有专业的大数据分析,并进行有效的供给侧改革,产能升级、去库存、供需对接都可以实现。如此一来,棉花生产、交易、消费等环节都能高效运转:棉农会根据最科学的需求数据去种植棉花;买卖双方会在适当的时机、以最合理的价格和最合适的对象进行交易。各环节效率提高了,资源利用率也会随之提高,交易成交率亦是如此。如此一来,供需对接、零库存将不再是一句空话。
比如棉庄,作为一家以棉花B2B电商平台为开端,定位于为棉花交易提供服务的互联网企业,一直在努力构建棉花行业大数据体系。依托现有的平台(包括web端和APP端),棉庄努力扩大信息来源渠道,把现有的所有资源整合在一起,从需求点切入,供用户选择;同时不断完善数据分析对比功能,为大家选择货物提供最直观的判断标准。此外,定位于棉花交易服务平台,棉庄将查询与交易功能做了严格的区分:棉庄货架中罗列的都是精准、可出售的现货;而资源搜索则涵盖了所有货源,质量报告可随时随地进行查询。通过多维度的数据分析,棉庄正在渐渐地向行业大数据靠拢,为棉花产业链所有参与者提供数据参考,从而使棉花行业供给侧改革成为可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29