京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据使棉花行业供给侧改革成为可能
国储棉轮出已经进行了一月有余,热度不断攀升,棉花价格居高不下,截止到目前,除5月30日单日成交率不足90%以外,其余单日成交率均维持在97%以上,最高成交价格更是高达14350元/吨。然而,今年初,棉花市场并非如此景象:市面上很多棉花都无人问津,不少业内人士表示行情不好,有时亏本都做不到生意。现如今,大家纷纷猜测,难道是国储棉激活了整个市场?可是回忆去年,国储棉拍卖却远不如现在这般红火:累计成交量(6万多吨)仅占轮出资源总量(100多万吨)的6.34%左右,成交结果十分惨淡。同样是棉花市场,同样是国储棉,前后反差竟然如此之大,很多人不禁担忧,行情波动真的没法预测、没法控制吗?再者,近来国储问题频发:越来越多的贸易商参与竞拍,未来棉花价格走向难以预测;拍储成交后出库速度太慢,违规收费时有发生。棉花交易市场已经呈现紧张氛围,一定程度上也引起了部分纺企的恐慌心理。
棉花市场行情波动如此之大,问题究竟在哪?笔者认为,主要原因还在于目前的棉花交易大体采用比较传统的经营模式:成交总是建立在较为主观的判断基础之上,资源信息也无法大范围流通。加上市场本身波动较大,这种方式显然已经无法满足当下的消费需求。从交易商的角度看,交易双方需要耗费大量的时间和成本来找货和谈判,运输过程中还要承担很大的风险,而且选择范围非常有限。从市场的角度看,这其实造成了整个行业内人员、资本、时间以及物料等资源的浪费:每一次交易都需要重复冗长的流程;各交易方获得的资源、经验都无法在整个行业内进行充分的传播与共享;交易所需的时间和成本总会被挤出一部分用于风险控制,而且往往并没有多大效果。说到底,还是因为交易过程中存在种种不确定性:无法实时了解市场行情,无法随时获取资源信息,无法尽快掌握合作对象及其货物信息。如果棉花行业也有专业的大数据分析,并积极推进供给侧改革,信息不透明、资源不共享等问题将得到大幅度改善。
以互联网为基础的大数据,是一个行业资源信息的总和,来源于无数渠道,提炼为有效信息,而后才能为行业所用。其最核心的价值在于能够快速地、对海量数据进行存储和分析。相比现有的其他技术,大数据“廉价、迅速、优化”三方面的综合优势是最明显的。因此,无论是对于互联网公司,还是整个行业,快速掌握大数据技术已经成了决胜性战略。大数据是技术,供给侧改革是经营模式。当下中国经济所面临的困境,仅从需求侧入手已经很难有所突破,因此供给侧和需求侧相结合才是结构性改革。提高供给质量,优化资源配置,扩大有效供给,让供给侧与需求侧相互适应,从而提高全要素生产率,是所有行业都应该追求的终极目标。如果棉花行业也有专业的大数据分析,并进行有效的供给侧改革,产能升级、去库存、供需对接都可以实现。如此一来,棉花生产、交易、消费等环节都能高效运转:棉农会根据最科学的需求数据去种植棉花;买卖双方会在适当的时机、以最合理的价格和最合适的对象进行交易。各环节效率提高了,资源利用率也会随之提高,交易成交率亦是如此。如此一来,供需对接、零库存将不再是一句空话。
比如棉庄,作为一家以棉花B2B电商平台为开端,定位于为棉花交易提供服务的互联网企业,一直在努力构建棉花行业大数据体系。依托现有的平台(包括web端和APP端),棉庄努力扩大信息来源渠道,把现有的所有资源整合在一起,从需求点切入,供用户选择;同时不断完善数据分析对比功能,为大家选择货物提供最直观的判断标准。此外,定位于棉花交易服务平台,棉庄将查询与交易功能做了严格的区分:棉庄货架中罗列的都是精准、可出售的现货;而资源搜索则涵盖了所有货源,质量报告可随时随地进行查询。通过多维度的数据分析,棉庄正在渐渐地向行业大数据靠拢,为棉花产业链所有参与者提供数据参考,从而使棉花行业供给侧改革成为可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16