京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据使棉花行业供给侧改革成为可能
国储棉轮出已经进行了一月有余,热度不断攀升,棉花价格居高不下,截止到目前,除5月30日单日成交率不足90%以外,其余单日成交率均维持在97%以上,最高成交价格更是高达14350元/吨。然而,今年初,棉花市场并非如此景象:市面上很多棉花都无人问津,不少业内人士表示行情不好,有时亏本都做不到生意。现如今,大家纷纷猜测,难道是国储棉激活了整个市场?可是回忆去年,国储棉拍卖却远不如现在这般红火:累计成交量(6万多吨)仅占轮出资源总量(100多万吨)的6.34%左右,成交结果十分惨淡。同样是棉花市场,同样是国储棉,前后反差竟然如此之大,很多人不禁担忧,行情波动真的没法预测、没法控制吗?再者,近来国储问题频发:越来越多的贸易商参与竞拍,未来棉花价格走向难以预测;拍储成交后出库速度太慢,违规收费时有发生。棉花交易市场已经呈现紧张氛围,一定程度上也引起了部分纺企的恐慌心理。
棉花市场行情波动如此之大,问题究竟在哪?笔者认为,主要原因还在于目前的棉花交易大体采用比较传统的经营模式:成交总是建立在较为主观的判断基础之上,资源信息也无法大范围流通。加上市场本身波动较大,这种方式显然已经无法满足当下的消费需求。从交易商的角度看,交易双方需要耗费大量的时间和成本来找货和谈判,运输过程中还要承担很大的风险,而且选择范围非常有限。从市场的角度看,这其实造成了整个行业内人员、资本、时间以及物料等资源的浪费:每一次交易都需要重复冗长的流程;各交易方获得的资源、经验都无法在整个行业内进行充分的传播与共享;交易所需的时间和成本总会被挤出一部分用于风险控制,而且往往并没有多大效果。说到底,还是因为交易过程中存在种种不确定性:无法实时了解市场行情,无法随时获取资源信息,无法尽快掌握合作对象及其货物信息。如果棉花行业也有专业的大数据分析,并积极推进供给侧改革,信息不透明、资源不共享等问题将得到大幅度改善。
以互联网为基础的大数据,是一个行业资源信息的总和,来源于无数渠道,提炼为有效信息,而后才能为行业所用。其最核心的价值在于能够快速地、对海量数据进行存储和分析。相比现有的其他技术,大数据“廉价、迅速、优化”三方面的综合优势是最明显的。因此,无论是对于互联网公司,还是整个行业,快速掌握大数据技术已经成了决胜性战略。大数据是技术,供给侧改革是经营模式。当下中国经济所面临的困境,仅从需求侧入手已经很难有所突破,因此供给侧和需求侧相结合才是结构性改革。提高供给质量,优化资源配置,扩大有效供给,让供给侧与需求侧相互适应,从而提高全要素生产率,是所有行业都应该追求的终极目标。如果棉花行业也有专业的大数据分析,并进行有效的供给侧改革,产能升级、去库存、供需对接都可以实现。如此一来,棉花生产、交易、消费等环节都能高效运转:棉农会根据最科学的需求数据去种植棉花;买卖双方会在适当的时机、以最合理的价格和最合适的对象进行交易。各环节效率提高了,资源利用率也会随之提高,交易成交率亦是如此。如此一来,供需对接、零库存将不再是一句空话。
比如棉庄,作为一家以棉花B2B电商平台为开端,定位于为棉花交易提供服务的互联网企业,一直在努力构建棉花行业大数据体系。依托现有的平台(包括web端和APP端),棉庄努力扩大信息来源渠道,把现有的所有资源整合在一起,从需求点切入,供用户选择;同时不断完善数据分析对比功能,为大家选择货物提供最直观的判断标准。此外,定位于棉花交易服务平台,棉庄将查询与交易功能做了严格的区分:棉庄货架中罗列的都是精准、可出售的现货;而资源搜索则涵盖了所有货源,质量报告可随时随地进行查询。通过多维度的数据分析,棉庄正在渐渐地向行业大数据靠拢,为棉花产业链所有参与者提供数据参考,从而使棉花行业供给侧改革成为可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16