京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力酒企精准营销
在近日举行的第六届国际酒类博览会上,“大数据+白酒”成为了主题。如今,越来越多的白酒企业开始运营大数据,并结合电商平台升级产品营销平台。然而,业内人士表示,“大数据”的应用有利于企业发展,但人才和技术成为制约白酒企业发展“大数据”营销的一大因素。
白酒企业青睐“大数据”营销
在前不久举办的2016中国大数据产业峰会暨中国电子商务创新发展峰会上,茅台集团以茅台自建平台茅台云商向外界进行展示。
实际上,茅台、五粮液等一线白酒企业早在去年便开始筹建自己的电商平台。2014年,茅台集团电子商务股份有限公司成立,开始O2O业务。而在去年6月,茅台还召开股东大会,通过了《投资建设电商公司物联网云商》的方案。据了解,目前茅台云商也已经上线。茅台方面表示,茅台云商是茅台全产业链大数据的重要组成部分,具体包括茅台云商城、云分销、云销售以及物联网溯源防伪等系统。
茅台集团董事长袁仁国甚至表示,茅台将加入全球大数据浪潮,利用3-5年时间建设大数据平台,把互联网思维和大数据融入到企业战略及生产经营中。
除了自建电商,五粮液还联合电商平台苏宁,通过互联网零售、渠道整合、产品包销定制等方面整合对“90后”进行精准营销。宜宾五粮液股份有限公司董事长刘中国对此表示,五粮液与苏宁此次携手,将在产品、营销推广、大数据等方面展开合作,对白酒行业的发展进行探索。
此外,一些地方性酒企或中档白酒还运营“大数据”与科技企业合作,通过智能酒柜销售的方式进驻餐饮企业。据悉,“来e杯”目前已与董酒、珍酒、钓鱼台、金沙回沙酒等多家酒企达成了战略合作关系。顾客可以在智能酒柜中购买白酒,省去了自带酒水的繁琐。
意在加码精准营销
谈到白酒“大数据”,白酒行业分析师蔡学飞指出,白酒企业大数据不同于一般的互联网企业提出的大数据,实际上白酒做“大数据”与自身营销结构有关,像茅台等一线白酒企业更多是针对B端的精准营销。在没有“大数据”以前,茅台酒多为团购,而“大数据”的应用是白酒企业企图绕过渠道得知消费者的消费习惯、购买频次,从而做到预知。
茅台方面表示,依托“大数据”能有效地利用合作渠道的数据资源,通过人群的消费档次、频率、行为轨迹等辨识符合高端定制的人群,并可根据解读出的个体标签进行精准的品牌、产品沟通投放,降低获客成本,并带来较高的客户转换。
而对于与电商平台合作,苏宁控股集团董事长张近东曾公开表示,五粮液将可以借助苏宁大数据平台了解到全国消费者的消费习惯,对产品结构和铺货计划进行优化调整,提升供应链管理的效率。此外通过苏宁城市和乡镇的物流网络,将产品直接配送到消费者家中,降低中间环节的成本和风险。
技术成制约发展关键
然而,随着“大数据”越来越多被运用到白酒营销中,技术和人力资源储备成为“大数据”发展的关键。
蔡学飞指出,白酒企业做“大数据”,需要有庞大的数据库,这其中包含要建立跟踪顾客的消费行为,并且不单单是白酒的,还包括啤酒、葡萄酒等其他酒类,但是成本非常高,目前还没有哪一家企业来自建数据库,都是和电商企业合用,可以说当前白酒“大数据”还处在概念阶段,一线白酒企业茅台、五粮液等也仅仅处于试水的阶段。
北京商报记者了解到,此前茅台和阿里巴巴独家战略合作,以及五粮液与苏宁易购在宜宾举行“35度五粮液大单采购签署仪式”都印证了白酒企业与电商企业合作的发展模式。此外,五粮液在去年10月曾公告拟募资23亿元用于信息化和电商平台等项目建设,并在今年7月,将自有电商平台“五品库”在杭州正式上线,但是,目前知道“五品库”的人并不多。
蔡学飞表示,“大数据”比较偏好互联网,白酒企业左右不了,现在没有成熟的模式可以借鉴。像五粮液和苏宁等电商企业合作,放出的量比较小,借助已有电商平台的力量,是“大数据”的一种,但是量非常有限,此外一线白酒企业强势,配额有限,并不会给电商放开很多量,目前白酒企业都是在卡位抢市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27