京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为征信开辟一片蓝海
征信是一片蓝海,无论是传统金融机构,还是民间金融机构、草根金融机构,都需要征信数据为其风险控制保驾护航。从这个角度来看,这种需求是无限的。然而,征信的发展也是一场长跑,不论是生产数据、收集数据,都需要很长时间的积累。
2015年一开年,央行下发《关于做好个人征信业务准备工作的通知》,要求包括芝麻信用管理有限公司、腾讯征信有限公司、中诚信征信有限公司在内的8家征信企业做好个人征信业务的准备工作,令业界一片欢欣鼓舞。此后,对于个人征信的讨论持续高涨,从1月19日举行的2015年第二届互联网金融全球峰会上座无虚席的大数据征信专题会场可见一斑。
征信市场发展空间大
毫无疑问,中国的征信发展空间还很大。“我觉得中国征信业黄金发展期马上就要到了,也许下一个风口会是征信。”拉卡拉征信CEO徐彦之表达了对中国征信业未来发展的信心。腾讯征信总经理吴丹认为,在美国,征信体系的覆盖率达到了65%到70%,而目前我国央行征信体系的覆盖率在25%到30%,即覆盖3亿左右的人群。“如果按照美国的渗透率计算,中国的征信市场还有5亿人群的市场发展空间。”
个人征信市场的放开,无疑使征信体系向市场化方向迈进了一步,而以“大数据”为主要特点的个人征信企业,将在征信体系中发挥更加积极的作用。
“大数据的特点,第一是数据的指向性。即它提取的数据是有指向性的,是针对某一个群体的。第二是数据的威力性。威力性是指可以将数据信息转化为信息资源。”南京大学商学院副院长裴平认为,“大数据给我们带来的是金矿。”将消费者在互联网上的海量、多样的行为数据加以采集、组成、挖掘和应用,最终提炼出消费者信用信息,转化成可用的资源。
从另一个方面来看,互联网征信对国家倡导的普惠金融的发展有着积极的推动作用。吴丹表示,借助互联网征信能够帮助缺少因使用信用卡等金融工具而形成的信用报告的草根群体获得金融服务。
个人征信仍面临诸多挑战
尽管市场发展前景好,但不可否认的是摆在个人征信面前的还有诸多挑战。中智诚征信公司总裁李萱直言,数据的合规使用是当前个人征信面临的挑战之一。国内缺乏与征信相关的个人隐私法等法律,在法律真空下,是否能够使用这些数据,如何合法合规使用数据是征信公司面临的共同挑战。徐彦之对此也补充道,信息主体、信息授让人、信息使用者以及征信方,四方的责任、隐私界定等问题尚未明晰化,“在制度层面,我们希望把这些事情落实,能让征信机构更好地去发展,同时也需要我们一同去促进征信环境的健康发展。”
除了制度、法律上的挑战,数据的交换、整合、使用方面也受到规则不明的制约。北京华道征信常务副总童邗川认为,大数据无疑能够助力征信发展,但在现阶段,数据的收集、数据的整合规则尚未制定。“相关规则由国家层面出台制定,还是由机构自己发起形成未有定论。”他直言:“没有一定的规则,很难能够做到真正的征信。”
此外,在操作层面,徐彦之认为,行业不够统一、标准化的数据,影响了大数据的整合速度和进程。对此他倡议,各行业建立起统一的数据标准,共创行业共生环境。
未来之路任重而道远
相较英美等成熟征信体系,国内的征信体系仍处在起步发展阶段,虽然前景广阔,但要真正做起来,仍有很长的路要走。
安硕信息总裁高勇表示,征信是一片蓝海,无论是传统金融机构,还是民间金融机构、草根金融机构,都需要征信数据为其风险控制保驾护航。从这个角度来看,这种需求是无限的。然而,征信的发展也是一场长跑,不论是生产数据、收集数据,都需要很长时间的积累。因此,如果想要公司长久经营下去,要有一整套完善的数据生产、采集、分析机制才可以。
徐彦之用“任重道远”四个字来形容征信行业的未来发展之路。“到目前为止,国人对征信的理解,仅仅在于信贷征信的初级阶段,我们还有很多工作要做。”
征信与每个个体利益密切相关,征信公司肩负着不可忽视的社会责任。芝麻信用高级专家杨光表示,“真正进入这个行业之后,觉得其实大家的利益都是相关的,所以要更加稳妥地去创新。”在6个月的时间里,我们会做好包括投诉受理,安全保障等各方面的准备工作。徐彦之则表示:“对于8家企业来说,历史使命感和社会责任也许会远远大于商业价值,相信我们8家企业会从各个角度,不同维度去影响市场。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22