京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据技术预防股市大幅波动
前一时期,决策层强力全线救市:28家已获IPO批文公司暂缓后续发行,21家券商出资1200亿元投资蓝筹股ETF,25家公募,高管积极申购本公司偏股型基金。国家护盘的背后,是为了守住金融安全底线以此维护国家安全。对于股市剧烈波动,是否可以提早介入布局进行预防?大数据技术应该是最佳途径。
一带一路、亚投行、结构性经济改革,都需要稳定健康的金融。国家护盘的背后,是经济安全与国家安全的辩证关系。正如7月4日,人民日报官微所说:券商增资,新股IPO暂缓,系列政策的目标只有一个:稳定市场!守住金融安全底线,才有资本市场的健康发展,新常态下的改革红利才会化作实实在在的获得感。
此轮强力全线救市,国家在各个层面都付出了巨大的成本。资金层面拿出了大量的真金白银,政策层面在一定程度上牺牲了自由市场。这个成本补救措施固然重要,但倘若仅靠补救措施来稳定市场,不论是现实成本还是未来成本,都非常之高。如果我们能够从前期,从预防角度来应对股市剧烈波动,那么我们稳定市场的付出将会大大减少。
股市剧烈波动的导火索一定是由一些特定关系的账户的交易引发,进而带动受影响的股票发生被抛售的行为,最终触发某些特定交易机制走向负反馈,带动整个系统发生崩盘。那么,预防股灾的最佳措施就是及时发现和预警这些特定关系账户的非正常交易行为,并对其实时恰当的干预。怎么才能及时发现和预警这些特定关系账户呢?
我国沪深两市股票账户总数超过2亿,日成交额平均达到1万亿元,最高曾到1.8万亿元。在这样海量的数据中找寻账户间的特殊关系,只能利用大数据技术。
大数据技术专门为处理海量、多元、异构的数据而生,可以通过机器进行高维学习进而发现靠人无法发现的规律。但即使利用当下最先进的大数据技术,要在股票交易这样的海量数据中找到特殊关系账户,每天产生的交易数据可能需要几十天的时间来进行处理。按这个运算效率,即使能够发现特殊关系账户,等到发现的时候,这些特殊交易已经引爆股灾了,无法达到预防的目的。那么,提高运算效率,就是通过特殊账户交易发现股灾导火索的关键。而提高运算效率的办法,就是缩小账户匹配范围,通过多种社会网络关系来缩小范围。
金融交易本质是点对点的交易。点与点的关系本质上是一种社会网络的关系。社会网络的关系有很多种,个人社会网络关系包括家庭网络关系、同事网络关系、朋友网络关系、同学网络关系等等,公司网络关系包括投资网络关系、高管网络关系、交易网络关系、供应链网络关系等等,金融网络关系包括资金流动网络关系、担保网络关系、有价证券转让网络关系等等。
据了解,中国互联网金融创新研究院的科学家们已经在做这方面的努力。科学家们曾利用数联铭品的“浩格云信”大数据关联图谱技术,做过这样的演算:
例如在调查某上市公司股票异常交易时,叠加了这家上市公司、上市公司关联方、主要客户及供应商、各公司高管、高管家庭关系网、高管社会关系网等社会网络信息,将交易监控账户从2亿多股票账户缩小到12万户左右。在这个账户量基础上,结合当下最顶尖的大数据团队,开发出了交易实时监控和预警功能,使得这些账户的异常交易信息可以在1秒钟内进行弹出预警,可及时发现股价异常波动的原因。
简单说,通过大数据关联图谱技术,叠加多种社会关系网络,在多个维度找寻和匹配潜在的特殊账户关系,大幅度提高运算效率,及时高效地发现关联账户,使得预防股灾成为可能。利用大数据关联图谱技术,建立金融防火墙,主动侦测金融风险,是可以为“货币战争”赢得时间和战机的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22