
以大数据思维培养自己,累积工作经验
什么叫工作经验?工作经验怎么来的?人们的工作经验其实是由「数据亅构成的;这话怎么说?且听我为您道来。
在工作中,我们为什么能得到经验?这是因为职场每天产生了各种大大小小、正式、非正式的数据;例如有销售数据、财务数据、运营数据、业务分析数据、生产数据、考勤数据、管理指标(KPI)、不同项目执行时间进度等等。这些数据在不同岗位的工作者经过一段时间的接触、学习、体会、运用之后,渐渐形成我们对未来执行或规划手上各类业务的“能力”,这个“能力“即所谓职场经验。
而人们之所以会有「能力亅高低、强弱的差异,就在于每个人对身边数据的理解、掌握、运用的方式及敏感度不同等。这边所谓的「掌握亅是指对各类数据的接触、收集、观察、处理等。数据的掌握力对于将来面对数据时的理解及运用有很大影响,这是职场经验的重要形成因素。不过「掌握力亅会因职位性质、职位高低、职位重要程度、年资、知识、人脉等而有差异与限制。
职场经验是由数据构成的,不单白领适用,即便像厨师、技术工、保洁工等蓝领技术或体力活儿,也一样适用这观点;以厨师为例,食材的选择、保存、料理、调味料的配比、火候掌握、时间控制,无一不是数据,这些数据组成了他们的烹饪经验与能力。其中有些人喜欢对厨房各类数据深入去收集、理解、钻研与运用,因而往往能够成为顶尖的大厨,而那些对掌握基本烹饪数据就满足的人,就成了一般厨师。其他职能岗依此类推。
人们过去工作累积的「数据亅形成了经验,足够多的经验会形成知识。经验与知识透过“归纳”及“演绎”两大方式,会再加工形成新的知识与解决问题的能力。在面对某些决策过程、突发状况或全新事务时,我们会在心中调取过去数据来作为决策或解决现在问题的参考,这个“调取”过程产生的解决方案,就是对过去数据的「解读亅。如果对已有数据的理解知识不够,或过去对数据的理解就是错误的,或是内、外部可参考的数据不够多(或难以获取),那么“解读”时就易产生偏差或错误,造成在工作上的效率变差、或做错事、或误判形势用错解决方法等状况发生。
而职场更常见到的是因为部门或个人的本位主义、利益关系、面子问题等各类原因,以致出现明明同一份数据结果,却各自表述出不同结论的情况出现,其中最恶劣的就是操弄数据欺上瞒下。若各自表述的某一方权力较大,或论点被接受了,但它其实是错的,那么这个数据的「解读亅将形成公司及个人未来处理类似情况的依据。对数据的曲解、误用,等于站在错误的基础上去做事情,如此,即便每个员工兢兢业业的在工作,最后得到结果会是好的吗?
这几年流行讲大数据,一样可以套用在工作经验上。企业进行大数据的收集、梳理、分析,是希望数据为企业带来更大的价值,产生更多的效益。而工作经验的大数据呢,则是指跳脱我们自身的职能岗范围,扩大我们对「数据亅的接触来源;例如培养第二工作技能,学习阅读不同业务报表,跳脱目前职务角色常常换位思考,扩大人际交友圈多认识与自己领域不同的朋友,不畏开口向别人请益,多参加培训与研讨会活动,培养涉略不同知识的习惯等等都是。而在移动网络时代,社交平台上到处可见的干货文章,还有MOOC等资源,这些都是摄取多元数据最佳的管道。
工作者以大数据思路培养自己,绝对是笔好投资,那些在职场能脱颖而出,活出精彩价值的人,正是擅用「数据亅提升自己视野与能力的最佳写照。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15