
以大数据思维培养自己,累积工作经验
什么叫工作经验?工作经验怎么来的?人们的工作经验其实是由「数据亅构成的;这话怎么说?且听我为您道来。
在工作中,我们为什么能得到经验?这是因为职场每天产生了各种大大小小、正式、非正式的数据;例如有销售数据、财务数据、运营数据、业务分析数据、生产数据、考勤数据、管理指标(KPI)、不同项目执行时间进度等等。这些数据在不同岗位的工作者经过一段时间的接触、学习、体会、运用之后,渐渐形成我们对未来执行或规划手上各类业务的“能力”,这个“能力“即所谓职场经验。
而人们之所以会有「能力亅高低、强弱的差异,就在于每个人对身边数据的理解、掌握、运用的方式及敏感度不同等。这边所谓的「掌握亅是指对各类数据的接触、收集、观察、处理等。数据的掌握力对于将来面对数据时的理解及运用有很大影响,这是职场经验的重要形成因素。不过「掌握力亅会因职位性质、职位高低、职位重要程度、年资、知识、人脉等而有差异与限制。
职场经验是由数据构成的,不单白领适用,即便像厨师、技术工、保洁工等蓝领技术或体力活儿,也一样适用这观点;以厨师为例,食材的选择、保存、料理、调味料的配比、火候掌握、时间控制,无一不是数据,这些数据组成了他们的烹饪经验与能力。其中有些人喜欢对厨房各类数据深入去收集、理解、钻研与运用,因而往往能够成为顶尖的大厨,而那些对掌握基本烹饪数据就满足的人,就成了一般厨师。其他职能岗依此类推。
人们过去工作累积的「数据亅形成了经验,足够多的经验会形成知识。经验与知识透过“归纳”及“演绎”两大方式,会再加工形成新的知识与解决问题的能力。在面对某些决策过程、突发状况或全新事务时,我们会在心中调取过去数据来作为决策或解决现在问题的参考,这个“调取”过程产生的解决方案,就是对过去数据的「解读亅。如果对已有数据的理解知识不够,或过去对数据的理解就是错误的,或是内、外部可参考的数据不够多(或难以获取),那么“解读”时就易产生偏差或错误,造成在工作上的效率变差、或做错事、或误判形势用错解决方法等状况发生。
而职场更常见到的是因为部门或个人的本位主义、利益关系、面子问题等各类原因,以致出现明明同一份数据结果,却各自表述出不同结论的情况出现,其中最恶劣的就是操弄数据欺上瞒下。若各自表述的某一方权力较大,或论点被接受了,但它其实是错的,那么这个数据的「解读亅将形成公司及个人未来处理类似情况的依据。对数据的曲解、误用,等于站在错误的基础上去做事情,如此,即便每个员工兢兢业业的在工作,最后得到结果会是好的吗?
这几年流行讲大数据,一样可以套用在工作经验上。企业进行大数据的收集、梳理、分析,是希望数据为企业带来更大的价值,产生更多的效益。而工作经验的大数据呢,则是指跳脱我们自身的职能岗范围,扩大我们对「数据亅的接触来源;例如培养第二工作技能,学习阅读不同业务报表,跳脱目前职务角色常常换位思考,扩大人际交友圈多认识与自己领域不同的朋友,不畏开口向别人请益,多参加培训与研讨会活动,培养涉略不同知识的习惯等等都是。而在移动网络时代,社交平台上到处可见的干货文章,还有MOOC等资源,这些都是摄取多元数据最佳的管道。
工作者以大数据思路培养自己,绝对是笔好投资,那些在职场能脱颖而出,活出精彩价值的人,正是擅用「数据亅提升自己视野与能力的最佳写照。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29