
看超市如何利用大数据吸金
我们一直说,大数据时代,数据就像金子一样值钱;大数据是对海量数据的分析,大数据对企业多么多么重要,总说理论没意思,今天就让我们看看真实的例子。
乐购大家应该都知道吧,各大城市都有的连锁超市,大多数超市会员卡只有积分、打折的简单功能。而乐购却利用“大数据”对消费者每次采购的总量、偏爱哪类产品、产品使用频率等消费行为进行记录、分析。随着数据不断累积,消费者及其家庭的消费需求、习惯和偏好也在不断对焦中变得精准。
乐购信奉一种理念——You are what youbuy(即,你买什么你就是什么样的人)。如果一个男性会员在过去十几周常常采购火腿、方便面和啤酒,他极有可能还是单身。
如果女士的购物篮中接连出现奶粉、尿布,她应该是一个年轻的母亲;如果一个会员在超市打折时批量采购5升装的可乐、大瓶酱油和食用油,他八成是附近小店的老板;如果一个家庭主妇多次采购中既有老年人的保健品,又有孩子的玩具,她似乎有一个三代同堂的大家庭……这看上去似乎很简单,但如果没有大数据对每次每个消费者信息的收集、统计和分析,仅凭一次购物是无法判断的。
2打开金矿的方法和路径
“大数据”能让乐购了解每一个顾客的消费需求。在加入会员12周后,会员开始不定期收到乐购针对个人定制的优惠券,在企业数据库中她像一千多万乐购中国会员一样被按照多种标准划分到不同组群。
有的按照忠诚度划分,可分为忠诚型、机会型、已流失;有的则按照消费能力,分为高中低三档;有的则是按照购物习惯分类,数码达人、时尚辣妈、进口商品爱好者……
打开金矿的方法和路径
单个消费信息看似就像一粒金沙零散、无用,但海量数据聚集起来,就能形成一座硕大的金矿。关键是能否找到打开金矿的方法和路径。
“采集和分析消费数据能够透过消费行为识别顾客需求,划分类别能够摸清这一群组消费者的个性与共性,从而在日常消费中进行精准引导、营销。”乐购市场部总监邓旭如是说道。
孕妇就是在将消费者进行划分后,被乐购最为看重的一类会员。人的一生中总有几次消费行为习惯发生明显改变的时期,从妊娠期需要护肤品、防辐射装,生产后消费奶粉、尿布,婴儿成长期采购玩具、童装,怀孕生子的消费特征十分明晰、极易辨别确认。
3精准营销
从怀孕到儿童三岁前是家庭消费需求最旺盛的时期,每人每年平均消费开支可达四千元以上的峰值。这是任何一个超市最希望获得的客户群体。
根据乐购大数据分析结果,一小部分的顾客构成了利润的一大部分,即80∶20原则,在任何一个连锁店,前100名消费最高的顾客和最底层的4000名顾客价值相当。辨识目标客户的身份是赢得他(她)们的前提。
大数据绝非如许多人想象中是锁在黑色服务器中充满运算法则的枯燥计算,它对现实商业社会有着不可估量的价值。
如果一个顾客被划分在高端消费人群,却常常购买抹布,大数据就会向她推送高级厨纸;一到情人节,系统就会向单身男女寄出巧克力的优惠券;每逢鸡蛋打折,老年女性消费者就会收到减价的信息……
同时,乐购中国还尝试着针对细分人群深度营销,组建了十多个俱乐部,超市为“分类俱乐部”制作了不同版本的“俱乐部卡杂志”,刊登最吸引这些细分人群的促销信息和关注的话题。
4大数据挖掘的商业价值仅冰山一角
在零售业界有种说法,沃尔玛是个了不起的采购者,乐购是个了不起的销售者。全球最大的管理咨询和技术服务供应商埃森哲中国公司总监钱冰认为,乐购在全球零售业会员制最为成功,其秘诀就是通过大数据分析过往消费记录预判每一名顾客的潜在需求,从而个性化营销。
当收到的优惠券含有大量所需商品时,顾客会认为超市“懂我”,不是一味把不需要的商品推销出去,而是在用心提供私人定制化服务。或许某一种商品优惠幅度并不大,但多种所需商品同时优惠的诱惑,往往让人难以抗拒。这时,上门消费、进而成为忠诚顾客的可能性就会大大增加。
如果大数据分析出周边地区顾客以高端人群为主,超市采购的商品就要更加注重品质,超市环境布局也要更加舒适;如果以低端人群为主,应该经常打折促销,缩短货架间距以加快顾客流动性。
最后
乐购在对顾客精准营销的同时,也尝试着用大数据指导企业自身的经营管理。对于消费者,这种合理利用购物信息的方式并不会引起消费者的反感,消费者可以已最快捷方式得到自己想要的优惠,不用再像过去,拿着超市的促销宣传海报,一个一个的筛选适合自己的商品,顺应现在快节奏的生活。大数据对商业价值的发掘仅是冰山一角,随着大数据发展越来越完善,会有更多方便人们衣食住行的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15