京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用大数据发展小微贷业务
大数据最早由麦肯锡公司提出,麦肯锡认为,数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。随着互联网产生的大数据,各种基于互联网的小微贷不断涌现并在互联网金融中展现出巨大影响力,农信社应积极挖掘、利用大数据来促进小微贷业务的发展,使自身在愈加激烈的竞争中立于有利之地。
大数据带来小微贷发展机遇
大数据降低了信息搜寻成本。银行在搜寻小微企业信息、审核贷款时需要投入较高的人力和物力成本,付出较高的边际成本。而在信贷业务中运用大数据的核心优势恰好在于解决信息不对称,降低信贷业务成本。社交化网络和电子商务平台在发展中积累了大量数据,对数据进行挖掘、分析得出的企业信息,比企业在现实中发布的信息更具有可信度,也具有更大的经济价值。以阿里小贷为例,阿里小贷公司利用淘宝、天猫平台的商户历史交易、客户评价、信用记录等数据,进行统一评估计算分析,作为客户贷款的标准。这样既有效解决了信息不对称问题,同时也降低了信息搜寻成本。互联网环境下产生的大数据,有效降低银行与小微企业之间信息不对称的问题,为小微贷业务的发展带来了机遇。
大数据提供有效的风险管理方法,推动风险管理理念的根本性改变。在传统的信贷模式下,企业可用于抵押的资产与企业信贷可获得性成正比,但是贷后持续监管不足、贷款损失后抵押品变现难度大与变现价值低,这种模式并不能有效为金融机构避免损失。况且对小微企业而言,足值担保和抵押是很难达到的。大数据时代的风险管理从依靠人力转为依靠电子系统,重点监控企业的持续经营、现金流量、考察企业的交易数据、客户信用评价记录等。大数据提供了有效的风险管理办法,与解决小微企业融资难的思路相契合。如阿里小贷基于大数据平台推出的“按日计息、随借随还”的小额信贷产品,不仅解决了客户短期资金需求,而且不良贷款率远远低于银行传统模式下的小微企业贷款。
大数据环境下农信社小微贷的发展对策
深挖数据、加强信贷链条与大数据的融合。农信社应全面树立“数据立行”的理念,积极开发、建立数据平台、深挖数据,将大数据融入农信社信贷业务链条,以数据分析结果为依据,全面实现小微企业业务流程、风险管理的标准化。农信社可以深耕供应链金融领域,建立供应链数据平台,通过与本地核心企业合作,获取核心企业的上下游企业的相关数据,以数据处理分析结果为依据,向上下游小微企业提供信贷服务。同时,电商、社交网络平台沉淀大量的客户信息,这些信息都从不同角度反应客户的资金、信用状况,农信社应积极与电商、社交网络平台进行合作,共享客户信息,促进小微企业贷款链条与数据的融合。
构建O2O电商平台,培育农信社服务生态圈。虽然农信社在发展过程中积累了一定的结构化金融数据,但这些数据在小微贷业务中是远远不够的,相反互联网发展所产生的大量电子商务、社交、生活数据便可实现小微贷业务的快速、精准定位。所以,从获取数据是未来银行发展的第一要务来讲,农信社构建自身的电子商务平台是必走的道路。拥有自身电子商务平台,既可以使农信社获取客户第一手数据、增加自身客户粘性;又可以获取客户信用记录,构建自身信用体系;最重要的是可以积极、精准、快速的为客户提供综合化金融服务。
农信社可以通过O2O平台充当支付担保角色,促进交易的完成。同时,通过O2O电商平台,农信社可以积累用户的消费数据、信用记录,以此构建自身客户的信用体系。农信社可以构建打通农户和城乡居民,社区居民和城市商户的O2O电商平台,例如,农信社建立自身电商服务平台,将农户的绿色农产品放在电商平台上销售,通过与社区便利店、居委会合作,组织居民线上购买绿色农产品,在社区便利店即可提取已购买的产品。在交易过程中,农信社全程充当支付担保,既促进农户农产品的销售,又保证了社区居民的资金安全。同时,农信社可根据O2O电商平台构建的信用体系,实现精准、快速的小微贷款。农信社如果能把握发展O2O的机会,培育服务生态圈,可以使自身在激烈的竞争中获得进一步的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09