京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析:安全防御的制胜法宝
随着大数据价值的凸显,大数据分析的运用也越来越广泛,在信息安全领域,大数据分析已经成为公认的制胜法宝,特别是针对高级持续性威胁(APT)。大数据分析方法给安全分析、安全预警、安全管理、安全防护带来了新思路、新机遇,它可能会改变未来信息安全的技术格局。
过去的一年,整个IT领域都在谈论大数据,大数据甚至被认为是可以比肩互联网革命的整个信息产业的又一次发展高峰。现在是大数据时代,因为数据量在爆炸式增长——近两年所产生的数据量相当于2010年以前整个人类文明产生的数据量总和;而且数据来源极大丰富,语音、视频、图像等非结构化数据所占比例逐渐增大。海量的数据与我们的生活息息相关:互联网行为记录,地理位置记录,消费信息记录等等,人们的行为细节和隐私无一遗漏。同样,大数据对信息安全影响深刻,各种网络行为、日志都被记录下来,从而发现潜在的安全风险。
发觉潜在的威胁——大数据的这种能力对今天的信息安全防范意义重大。我们知道,高级持续性威胁(Advanced Persistent Threat,APT)是如今企业、政府机构信息安全面临的最大威胁。在APT攻击当中,黑客以窃取核心资料为目的,往往经过长期的经营与策划,网络攻击和入侵行为具有高度的隐蔽性。APT攻击的关键在于黑客隐匿自己,针对特定对象,长期、有计划性和组织性地窃取数据。这样的“网络间谍”行为,对网络安全系统提出更高的要求,一般的防范手段难以发现。
大数据分析有效防御APT攻击
企业的计算机网络系统产生大量日志数据,包括上述核电站计算机系统,只是与公网物理隔离,内部依然是一个庞大的网络。大数据可以针对所有的系统运行记录进行分析,可以弥补时间点检测技术的不足,发现网络攻击的蛛丝马迹。在这个基础上,结合传统的检测技术,可以组成基于记忆的检测系统,这是由国内安全厂商启明星辰提出的思路。
RSA曾提出过三种方法应对APT攻击:一是利用虚拟化带来的预防机制;二是一旦出现任何攻击,可将对服务器进行重置;三是使用虚拟监控,利用虚拟化平台搜集数据,并进行分析。事实上,通过预防机制应对APT,只能对已知威胁有效;发现攻击对服务器重置属于补救措施,亡羊补牢只是为了降低损失;利用虚拟化平台收集数据并分析,是基于大数据技术的方法,也是应对APT攻击的关键。
应用大数据分析,需要强大的数据采集平台,以及强大的数据分析处理能力。最理想的情况是建立全球化的数据分析引擎,在全球范围内进行相关数据的关联性分析。这样就能克服信息分布孤岛带来的调查取证难的问题,更容易发现攻击。针对具体的网络、系统和应用的运行数据采集分析,捕获、挖掘、修复漏洞;对全球已经发生以及正在发生的网络攻击行为进行记录,并将这些海量的数据经过多维度的整合分析,自动生成漏洞库、黑客们行为特征等数据库。对于具体的网络系统,全球化的安全监测,运用大数据技术,可以提前发现攻击,提前阻止。
对于企业、组织机构来讲,首先要把信息收集起来进行识别,包括日志全采集,网络监控,然后把所有的信息放到统一的监控平台,建立全自动化的响应系统。因为大数据需要一个中控系统把所有内部的、外部的信息收集起来进行分析。
大数据分析是安全防御的制胜法宝,这是信息安全领域公认的事实,然而,大数据并不针对APT攻击中的某个步骤,而是通过全面收集重要终端和服务器上的日志信息以及采集网络设备上的原始流量,进行集中分析和数据挖掘。发现APT攻击的蛛丝马迹后,通过全面分析海量数据,从而还原整个APT攻击场景。面向全局而非局部,这是目前大多数厂商采用的思路,也是相对正确的思路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22