
电池也大数据物联网起来了
消费类电芯,因为用电器件需要电量相对较小,单体电芯的电量输出基本就能满足要求,所以很少需要几个电芯一起配合使用。单体电芯电量小,遇到电量输出较高的使用场合,比如电动汽车和储能等,就需要很多电芯进行串并联,获得比较高的输出电压/输出电量/输出电流/输出功率等。如下图(图1和图2)一样,很多方形电芯和圆柱电芯(18650)并成一个模组,很多模组再并成一个pack,作为电动汽车的动力来源。网上有人拆解过特斯拉model S,85Kwh的电池包,7104节松下生产的圆柱电芯,每444节一组并联,共16组,组间串联,组成电池包。
马斯特敢这么干,不一定谁都可以这么想。首先,松下的小圆柱技术炉火纯青,兼顾成本低廉和性能一致性。有笑话称,如果用两台机器去测试松下的电池,出来的曲线不一样,你首先怀疑的应该是你的测试问题。电池生产工艺复杂,影响电芯一致性的因素繁多,从前至后,除了材料本身的一致性之外,还有诸如配料/搅拌/涂布/冷压/分条/卷绕/注液/化成等。为了提高电池出货一致性,电池厂家还会在化成后增加分选工序,挑选出那些阻值偏移较大/自放电比较严重的电池。电芯一致性如果不好,会严重影响电池使用的寿命,缩短电池包使用年限。单体电芯在经过很多次充放电后,因为表面SEI膜增长/副反应增多/隔离膜孔洞被堵塞等原因,可逆容量会有所衰减,容量衰减到初始容量的80%时,将严重影响电动汽车的设计功能发挥。模组中电芯如果一致性较差,使用同一电流进行充放电时,会造成某些电池的过充或过放,这会大大缩短整体的循环寿命电池,不一致性将导致电池组内其它单体发生多米诺骨牌效应式的连锁反应。如循环寿命1000次左右的电芯,在电池组中的实际循环次数只有200次左右。但是,如果电芯一致性就是不好,成组还能用不?
传统的BMS肯定是拒绝的,但是如果是SDB(software defined battery)就不一定了。传统的BMS一根充电线进来,给所有的电池充电/记录/截至,然后再输出。如果电芯一致性较差,上边所描述的那些问题就会一一发生。再进一步,如果我们脑洞再开大一点,我在我的电池包里安装上两种电池,一种用于应对低速巡航时的低倍率放电工况,另一种用于应对高速急停时的高倍率放电工况。不同的电芯体系具有不同的特点,常考虑的能量密度/功率密度/成本/寿命/柔性等指标也是相互冲突,如果需要在同一模组中使用不同体系电芯,搭配出一个综合性能突出的产品,传统的BMS就比较困难了。微软觉得,这个可以这样做:给每一个电池都加上一个充电放电管理微装置(smart switching circuitry),收集每个电池的充放电电压/电流/电阻,实现智能分流调配,使每个电芯的充放电情况接近于单体电芯,最大化电芯的使用价值。这种电芯管理模式的主要难点在于收集到这些数据之后的分析与电流调配,微软为之开发了一个比较复杂的算法,并将使用这种电池管理模式的电池包为Software defined battery。
更关键的是,这种电池管理模式可以实现不同化学体系的混排管理。储能方式万万千,优点缺点不尽同。不同的电压/不同的电阻/不同的充放电倍率,这些电池组合在一起,能够正常工作么?微软就此,利用SDB,进行一个实验,得到了良好结果(Battery Management for 2-in-1s)。还有,在智能手表中,利用表带可以装配柔性的固态电池,搭配表盘下的聚合物锂电池,可以更好的延长待机时间,这就需要SDB更好的调控固态电池与液态电池之间的配合了。
至于这么多的充放电微装置的引入,钱(成本)的问题,大佬们说“都不是事儿(We believe the BoM cost and space requirement of our SDB solution will not be significant)”。以后,这个SDB系统还会连入整车物联网,理解你的个人行为和用户schedule等,服务您的出行。啊,我们电池也大数据物联网起来了,洋气。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07