京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电池也大数据物联网起来了
消费类电芯,因为用电器件需要电量相对较小,单体电芯的电量输出基本就能满足要求,所以很少需要几个电芯一起配合使用。单体电芯电量小,遇到电量输出较高的使用场合,比如电动汽车和储能等,就需要很多电芯进行串并联,获得比较高的输出电压/输出电量/输出电流/输出功率等。如下图(图1和图2)一样,很多方形电芯和圆柱电芯(18650)并成一个模组,很多模组再并成一个pack,作为电动汽车的动力来源。网上有人拆解过特斯拉model S,85Kwh的电池包,7104节松下生产的圆柱电芯,每444节一组并联,共16组,组间串联,组成电池包。
马斯特敢这么干,不一定谁都可以这么想。首先,松下的小圆柱技术炉火纯青,兼顾成本低廉和性能一致性。有笑话称,如果用两台机器去测试松下的电池,出来的曲线不一样,你首先怀疑的应该是你的测试问题。电池生产工艺复杂,影响电芯一致性的因素繁多,从前至后,除了材料本身的一致性之外,还有诸如配料/搅拌/涂布/冷压/分条/卷绕/注液/化成等。为了提高电池出货一致性,电池厂家还会在化成后增加分选工序,挑选出那些阻值偏移较大/自放电比较严重的电池。电芯一致性如果不好,会严重影响电池使用的寿命,缩短电池包使用年限。单体电芯在经过很多次充放电后,因为表面SEI膜增长/副反应增多/隔离膜孔洞被堵塞等原因,可逆容量会有所衰减,容量衰减到初始容量的80%时,将严重影响电动汽车的设计功能发挥。模组中电芯如果一致性较差,使用同一电流进行充放电时,会造成某些电池的过充或过放,这会大大缩短整体的循环寿命电池,不一致性将导致电池组内其它单体发生多米诺骨牌效应式的连锁反应。如循环寿命1000次左右的电芯,在电池组中的实际循环次数只有200次左右。但是,如果电芯一致性就是不好,成组还能用不?
传统的BMS肯定是拒绝的,但是如果是SDB(software defined battery)就不一定了。传统的BMS一根充电线进来,给所有的电池充电/记录/截至,然后再输出。如果电芯一致性较差,上边所描述的那些问题就会一一发生。再进一步,如果我们脑洞再开大一点,我在我的电池包里安装上两种电池,一种用于应对低速巡航时的低倍率放电工况,另一种用于应对高速急停时的高倍率放电工况。不同的电芯体系具有不同的特点,常考虑的能量密度/功率密度/成本/寿命/柔性等指标也是相互冲突,如果需要在同一模组中使用不同体系电芯,搭配出一个综合性能突出的产品,传统的BMS就比较困难了。微软觉得,这个可以这样做:给每一个电池都加上一个充电放电管理微装置(smart switching circuitry),收集每个电池的充放电电压/电流/电阻,实现智能分流调配,使每个电芯的充放电情况接近于单体电芯,最大化电芯的使用价值。这种电芯管理模式的主要难点在于收集到这些数据之后的分析与电流调配,微软为之开发了一个比较复杂的算法,并将使用这种电池管理模式的电池包为Software defined battery。
更关键的是,这种电池管理模式可以实现不同化学体系的混排管理。储能方式万万千,优点缺点不尽同。不同的电压/不同的电阻/不同的充放电倍率,这些电池组合在一起,能够正常工作么?微软就此,利用SDB,进行一个实验,得到了良好结果(Battery Management for 2-in-1s)。还有,在智能手表中,利用表带可以装配柔性的固态电池,搭配表盘下的聚合物锂电池,可以更好的延长待机时间,这就需要SDB更好的调控固态电池与液态电池之间的配合了。
至于这么多的充放电微装置的引入,钱(成本)的问题,大佬们说“都不是事儿(We believe the BoM cost and space requirement of our SDB solution will not be significant)”。以后,这个SDB系统还会连入整车物联网,理解你的个人行为和用户schedule等,服务您的出行。啊,我们电池也大数据物联网起来了,洋气。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06