企业里真实的数据分析案例解析
从最近跟进一些数据分析项目来看,慢慢对数据分析有了更多的理解。
数据分析的定义和误区:
数据分析,简单来说就是用数据进行分析。经验分析也是分析,但这是靠经验分析的,不是数据分析。数据分析就必须是通过数据进行推导或验证的。所以任何数据分析工具都是数据分析的工具,不管是Excel,spss或BI都是数据分析的工具,甚至说用计算器做分析也可以是数据分析。也就证明了一些人说Excel就是报表,而不是数据分析,这是错的。
网上看最多的流程是这样的。
但其实这样才是更合理的,
数据分析不一定是一次性的,是分次数的。第一次分析会得到一些结论和猜想,然后要收集更多数据来证实自己的猜想,不然就是猜想,和经验判断没什么区别的。
数据分析如何落地
数据分析只有落地,才有价值,不然数据还是数据,还浪费了人力,物力和财力。按我公司数据分析大牛的话来讲,数据分析首先是发现问题,然后是定位问题,最后是解决问题。
1.发现异常:
发现问题就是说看出数据的波动性和不正常性。看出数据的不正常,首先要定义怎么样的数据算不正常,和平时误差的波动对比是多少,平时的数据如何定义。(补充电商很多数据都是定义波动在+- 10%内为正常,平时是指近2周的平均数据)。举个例子:本来某网站某内部渠道A的订单转化率维持是4-5%左右。有一天突然变成了2%,而近2周的数据因为前几天的数据库异常,只有近8天的数据。那怎么办呢?难道说没2周,所以问题无法发现?
这时大牛告诉我,书本上和网上你所看到的数据都是完美的,但你现在遇到的就是现实,现实就是只有近8天的数据,你这次也就只能算近8天,或者近7天。以后积累数据更多后,你分析时才用近2周。要接受数据的不完美,以后你还会遇到很多数据上的bug。那就按近7天的订单转化率去算吧。这里补充一点:订单转化率的定义=订单/二跳Visits。这点定义,不同公司定义不同,但有一点是肯定的,因为是个比率值,所有近7天的平均订单转化率不是拿近7天订单转化率算平均,而是近7天的订单数平均/近7天的二跳Visits。
总算算出来了,近7天平均订单转化率是4.5%,昨天的订单转化率是2%,变化幅度明显超过10%,绝对是个异常。
2.定位异常:
如何定位异常,大牛说你是新手,所以你去分析各个细分维度,看哪个维度内部之间有很大变化。我把能分析的维度全都做了一遍,流量外部渠道,流量平台,流量访问地区,流量进入的商品类目。因为我的Excel功底很好,这些数据处理我较快滴就完成了,然后对大牛说,外部渠道订单转化率都在降,平台,地区和商品类目转化率也都是下降,而且之间下降的幅度都是差不多的。他说,如果都是在降的话,那说明问题不是在这里。只有某个维度内部之间,变化有较大悬殊的,才能定位到问题在这个维度。比如假设,刚才的维度中你发现平台中,PC转化率大跌,无线转化率基本没变化。那说明问题很可能出在网页上面。很可能是订单确认页的网页日志记录有问题,然后被记录的订单数少了。订单转化率=订单数/二跳Visits。分子少了,也就转化率低了。而你现在是都没什么差异,那你去看看网站的订单转化率是怎么样的,还有其他内部渠道的订单转化率变化吧。我很快去提取数据并计算了,整体网站转化率没什么变化,二跳Visits流量也没什么变化。但是内部渠道中有个内部渠道C,他的转化率提升了很多,但他的流量没什么大变化。大牛说,那问题差不多出来了,很可能是内部渠道A的订单数被错误计算到渠道C了。正常情况,每个渠道的转化率都是不怎么变化的,而且你都说流量没什么变化了。是要到解决问题的时候了。
3.解决异常:
可以让IT同事看看网页日志,是不是有流量被混入到渠道C了。一个比较简单的案例到此,差不多结束了。
首先要学会接受数据的不完美,哪怕要2周,如果只有1周,也只能先当5天算。
第二了解对比要可比计算近1周或近2周的平均数据前,都要先判断有没异常值出现。
第三,发现问题后要去进行维度拆分,维度内部差异很大的,才是问题的关键点所在。
第四,除了纵向对比日期外,还有想到横向对比同级渠道,还有考虑他们上面的整体。
你目前先慢慢学会对内部渠道A进行日监控,然后有异常数据能识别,然后去定位问题。你的自动化报表设计很不错,能大大减少每天的数据处理时间,也就有更多时间去定位和分析问题。解决问题,一般来说都是比较麻烦的,要涉及跨部门的沟通交流,很多都不是数据能解决的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03