京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业里真实的数据分析案例解析
从最近跟进一些数据分析项目来看,慢慢对数据分析有了更多的理解。
数据分析的定义和误区:
数据分析,简单来说就是用数据进行分析。经验分析也是分析,但这是靠经验分析的,不是数据分析。数据分析就必须是通过数据进行推导或验证的。所以任何数据分析工具都是数据分析的工具,不管是Excel,spss或BI都是数据分析的工具,甚至说用计算器做分析也可以是数据分析。也就证明了一些人说Excel就是报表,而不是数据分析,这是错的。
网上看最多的流程是这样的。
但其实这样才是更合理的,
数据分析不一定是一次性的,是分次数的。第一次分析会得到一些结论和猜想,然后要收集更多数据来证实自己的猜想,不然就是猜想,和经验判断没什么区别的。
数据分析如何落地
数据分析只有落地,才有价值,不然数据还是数据,还浪费了人力,物力和财力。按我公司数据分析大牛的话来讲,数据分析首先是发现问题,然后是定位问题,最后是解决问题。
1.发现异常:
发现问题就是说看出数据的波动性和不正常性。看出数据的不正常,首先要定义怎么样的数据算不正常,和平时误差的波动对比是多少,平时的数据如何定义。(补充电商很多数据都是定义波动在+- 10%内为正常,平时是指近2周的平均数据)。举个例子:本来某网站某内部渠道A的订单转化率维持是4-5%左右。有一天突然变成了2%,而近2周的数据因为前几天的数据库异常,只有近8天的数据。那怎么办呢?难道说没2周,所以问题无法发现?
这时大牛告诉我,书本上和网上你所看到的数据都是完美的,但你现在遇到的就是现实,现实就是只有近8天的数据,你这次也就只能算近8天,或者近7天。以后积累数据更多后,你分析时才用近2周。要接受数据的不完美,以后你还会遇到很多数据上的bug。那就按近7天的订单转化率去算吧。这里补充一点:订单转化率的定义=订单/二跳Visits。这点定义,不同公司定义不同,但有一点是肯定的,因为是个比率值,所有近7天的平均订单转化率不是拿近7天订单转化率算平均,而是近7天的订单数平均/近7天的二跳Visits。
总算算出来了,近7天平均订单转化率是4.5%,昨天的订单转化率是2%,变化幅度明显超过10%,绝对是个异常。
2.定位异常:
如何定位异常,大牛说你是新手,所以你去分析各个细分维度,看哪个维度内部之间有很大变化。我把能分析的维度全都做了一遍,流量外部渠道,流量平台,流量访问地区,流量进入的商品类目。因为我的Excel功底很好,这些数据处理我较快滴就完成了,然后对大牛说,外部渠道订单转化率都在降,平台,地区和商品类目转化率也都是下降,而且之间下降的幅度都是差不多的。他说,如果都是在降的话,那说明问题不是在这里。只有某个维度内部之间,变化有较大悬殊的,才能定位到问题在这个维度。比如假设,刚才的维度中你发现平台中,PC转化率大跌,无线转化率基本没变化。那说明问题很可能出在网页上面。很可能是订单确认页的网页日志记录有问题,然后被记录的订单数少了。订单转化率=订单数/二跳Visits。分子少了,也就转化率低了。而你现在是都没什么差异,那你去看看网站的订单转化率是怎么样的,还有其他内部渠道的订单转化率变化吧。我很快去提取数据并计算了,整体网站转化率没什么变化,二跳Visits流量也没什么变化。但是内部渠道中有个内部渠道C,他的转化率提升了很多,但他的流量没什么大变化。大牛说,那问题差不多出来了,很可能是内部渠道A的订单数被错误计算到渠道C了。正常情况,每个渠道的转化率都是不怎么变化的,而且你都说流量没什么变化了。是要到解决问题的时候了。
3.解决异常:
可以让IT同事看看网页日志,是不是有流量被混入到渠道C了。一个比较简单的案例到此,差不多结束了。
首先要学会接受数据的不完美,哪怕要2周,如果只有1周,也只能先当5天算。
第二了解对比要可比计算近1周或近2周的平均数据前,都要先判断有没异常值出现。
第三,发现问题后要去进行维度拆分,维度内部差异很大的,才是问题的关键点所在。
第四,除了纵向对比日期外,还有想到横向对比同级渠道,还有考虑他们上面的整体。
你目前先慢慢学会对内部渠道A进行日监控,然后有异常数据能识别,然后去定位问题。你的自动化报表设计很不错,能大大减少每天的数据处理时间,也就有更多时间去定位和分析问题。解决问题,一般来说都是比较麻烦的,要涉及跨部门的沟通交流,很多都不是数据能解决的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27