
企业里真实的数据分析案例解析
从最近跟进一些数据分析项目来看,慢慢对数据分析有了更多的理解。
数据分析的定义和误区:
数据分析,简单来说就是用数据进行分析。经验分析也是分析,但这是靠经验分析的,不是数据分析。数据分析就必须是通过数据进行推导或验证的。所以任何数据分析工具都是数据分析的工具,不管是Excel,spss或BI都是数据分析的工具,甚至说用计算器做分析也可以是数据分析。也就证明了一些人说Excel就是报表,而不是数据分析,这是错的。
网上看最多的流程是这样的。
但其实这样才是更合理的,
数据分析不一定是一次性的,是分次数的。第一次分析会得到一些结论和猜想,然后要收集更多数据来证实自己的猜想,不然就是猜想,和经验判断没什么区别的。
数据分析如何落地
数据分析只有落地,才有价值,不然数据还是数据,还浪费了人力,物力和财力。按我公司数据分析大牛的话来讲,数据分析首先是发现问题,然后是定位问题,最后是解决问题。
1.发现异常:
发现问题就是说看出数据的波动性和不正常性。看出数据的不正常,首先要定义怎么样的数据算不正常,和平时误差的波动对比是多少,平时的数据如何定义。(补充电商很多数据都是定义波动在+- 10%内为正常,平时是指近2周的平均数据)。举个例子:本来某网站某内部渠道A的订单转化率维持是4-5%左右。有一天突然变成了2%,而近2周的数据因为前几天的数据库异常,只有近8天的数据。那怎么办呢?难道说没2周,所以问题无法发现?
这时大牛告诉我,书本上和网上你所看到的数据都是完美的,但你现在遇到的就是现实,现实就是只有近8天的数据,你这次也就只能算近8天,或者近7天。以后积累数据更多后,你分析时才用近2周。要接受数据的不完美,以后你还会遇到很多数据上的bug。那就按近7天的订单转化率去算吧。这里补充一点:订单转化率的定义=订单/二跳Visits。这点定义,不同公司定义不同,但有一点是肯定的,因为是个比率值,所有近7天的平均订单转化率不是拿近7天订单转化率算平均,而是近7天的订单数平均/近7天的二跳Visits。
总算算出来了,近7天平均订单转化率是4.5%,昨天的订单转化率是2%,变化幅度明显超过10%,绝对是个异常。
2.定位异常:
如何定位异常,大牛说你是新手,所以你去分析各个细分维度,看哪个维度内部之间有很大变化。我把能分析的维度全都做了一遍,流量外部渠道,流量平台,流量访问地区,流量进入的商品类目。因为我的Excel功底很好,这些数据处理我较快滴就完成了,然后对大牛说,外部渠道订单转化率都在降,平台,地区和商品类目转化率也都是下降,而且之间下降的幅度都是差不多的。他说,如果都是在降的话,那说明问题不是在这里。只有某个维度内部之间,变化有较大悬殊的,才能定位到问题在这个维度。比如假设,刚才的维度中你发现平台中,PC转化率大跌,无线转化率基本没变化。那说明问题很可能出在网页上面。很可能是订单确认页的网页日志记录有问题,然后被记录的订单数少了。订单转化率=订单数/二跳Visits。分子少了,也就转化率低了。而你现在是都没什么差异,那你去看看网站的订单转化率是怎么样的,还有其他内部渠道的订单转化率变化吧。我很快去提取数据并计算了,整体网站转化率没什么变化,二跳Visits流量也没什么变化。但是内部渠道中有个内部渠道C,他的转化率提升了很多,但他的流量没什么大变化。大牛说,那问题差不多出来了,很可能是内部渠道A的订单数被错误计算到渠道C了。正常情况,每个渠道的转化率都是不怎么变化的,而且你都说流量没什么变化了。是要到解决问题的时候了。
3.解决异常:
可以让IT同事看看网页日志,是不是有流量被混入到渠道C了。一个比较简单的案例到此,差不多结束了。
首先要学会接受数据的不完美,哪怕要2周,如果只有1周,也只能先当5天算。
第二了解对比要可比计算近1周或近2周的平均数据前,都要先判断有没异常值出现。
第三,发现问题后要去进行维度拆分,维度内部差异很大的,才是问题的关键点所在。
第四,除了纵向对比日期外,还有想到横向对比同级渠道,还有考虑他们上面的整体。
你目前先慢慢学会对内部渠道A进行日监控,然后有异常数据能识别,然后去定位问题。你的自动化报表设计很不错,能大大减少每天的数据处理时间,也就有更多时间去定位和分析问题。解决问题,一般来说都是比较麻烦的,要涉及跨部门的沟通交流,很多都不是数据能解决的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15